Talks & Events

Ph.D. Thesis Defenses: 2008
DR21 Main: A collapsing cloud The molecular cloud, DR21 Main, is an example of a largescale gravitational collapse about an axis near the plane of the sky where the collapse is free of major disturbances due to rotation or other effects. Using flux maps, polarimetric maps, and measurements of the field inclination by comparing the line widths of ion and neutral species, we estimate the temperature, mass, magnetic field, and the turbulent kinetic, mean magnetic, and gravitational potential energies, and present a 3D model of the cloud and magnetic field. 3 + 1 Formulations of General Relativity In this thesis we carry out a theoretical and numerical study of different 3+1 formulations of General Relativity (GR) which have direct applications to numerical relativity. In particular, we introduce a method to analyze the well posedness of constrained evolution of the Einstein equations and show that the wellposedness of constrained evolution of the ArnowittDeserMisner (ADM), BaumgarteShapiroShibataNakamura (BSSN) and formulations which resemble the KidderScheelTeukolsky (KST) one, depends entirely on the properties of the gauge. Driven by this result, we introduce two new wellposed formulations of GR. The first one is a parabolization of the ADM formulation, which we call the PADM formulation, and is derived by addition of combinations of the constraints and their derivatives to the RHS of the ADM evolution equations. The desirable property of PADM is that it turns the surface of constraints into a local attractor because its constraint propagation system becomes secondorder parabolic independently of the gauge conditions employed. The PADM system may be classified as mixed hyperbolicsecondorder parabolic (MHSP). The second formulation is a parabolization of the KST formulation, which we call the PKST formulation, and is a manifestly MHSP set of equations. We carry out a stability analysis of flat space and demonstrate that the PADM system exponentially damps and smoothes all constraint violating modes. Finally, we describe a numerical implementation of the PADM formulation and study its accuracy and stability in a series of standard numerical tests. We show that the PADM scheme is numerically stable, convergent and secondorder accurate, and we compare its numerical properties with those of standard ADM and its hyperbolic KST extension. We demonstrate that PADM has better control of the constraintviolating modes than ADM and KST. Nbody simulations of modified gravity We introduce the method and the implementation of a cosmological simulation of a class of metricvariation f ( R ) models that accelerate the cosmological expansion without a cosmological constant and evade solarsystem bounds of smallfield deviations to general relativity. Such simulations are shown to reduce to solving a nonlinear Poisson equation for the scalar degree of freedom introduced by the f ( R ) modifications. We detail the method to efficiently solve the nonlinear Poisson equation by using a NetonGaussSeidel relaxation scheme coupled with multigrid method to accelerate the convergence. The simulations are shown to satisfy tests comparing the simulated outcome to analytical solutions for simple situations, and the dynamics of the simulations are tested with orbital and Zeldovich collapse tests. Finally, we present several static and dynamical simulations using realistic cosmological parameters to highlight the differences between standard physics and f ( R ) physics. In general, we find that the f ( R ) modifications result in stronger gravitational attraction that enhances the dark matter power spectrum by ~ 20% for large but observationally allowed f ( R ) modifications. More detailed study of the nonlinear f ( R ) effects on the power spectrum are presented in a companion paper. Phenomenology of Warped Extra Dimensions In this thesis we analyze the phenomenology of a particular class of models which are an extension of the Standard Model of particle physics, and go by the name of warped extra dimensions. We show how this very simple framework, which is motivated by trying to find a solution to the hierarchy problem, is capable of leading to a vast and rich phenomenology not only in particle physics but also in cosmology. The flexibility of this framework has allowed us to learn about model building techniques in particle physics, collider phenomenology and furthermore to make a link with cosmology. Regarding the latter link, we see that when we combine warped extra dimensions with the other major new physics scenario supersymmetry, we are able to account for the excess of baryons over antibaryons in the Universe. Furthermore, we show that once we have an extra spatial dimension we can accommodate the Higgs field as the fifth component of our gauge bosons. This leads to the models that go by the name of GaugeHiggs Unification (GHU). We construct a particular model and calculate the Higgs potential at oneloop showing that all SM masses can be accommodated and we obtain a Higgs mass in the acceptable range between 115 GeV and 160 GeV. Lastly, we analyze the interesting collider phenomenology derived from this scenario and show the detection possibilities at the next Large Hadron Collider (LHC). On the energetics, initiation of detonations, and nucleosynthesis of Type Ia supernovae in the gravitationally confined detonation model A sophisticated scheme to capture the effects of weak interactions and change in composition of matter burned to nuclear statistical equilibrium in hydrodynamic explosion simulations of Type Ia supernovae is developed. Coupled to a flame model, the scheme is applied to two dimensional axisymmetric simulations of Type Ia supernovae. The explosions are simulated in the gravitationally confined detonation paradigm, where a near Chandrasekharmass carbonoxygen white dwarf ignites in a single "bubble" within the first ~100 km off center, and the subsequent evolution of the bubble (rise, growth, and breakout through the stellar surface) is thought to lead to the initiation of a detonation at the antipodal point of breakout. Increasingly higher resolution simulations of the region where the detonation is purportedly initiated are presented, and detonations are indeed observed to form via the gradient mechanism in most cases. To support the validity of the initiation of a detonation in the underresolved full star simulations, and to quantify the uncertainties and dependences of successful initiation on details of its environment (such as composition, density, peak  and background temperature, functional form of the temperature inhomogeneity), a suite of one dimensional reactive hydrodynamics calculations determining the smallest sizes of hotspots leading to a detonation are performed for a range of conditions that might obtain in the surface layers of white dwarf stars. Finally, a novel, computationally inexpensive method to obtain full isotopic yield information of material that was burned by fusion processes to nuclear statistical equilibrium during the detonation phase of the supernova explosion is developed and applied to the aforementioned supernova simulations. CrossCalibration of Cluster MassObservables and Dark Energy This paper is a first step towards developing a formalism to optimally extract dark energy information from number counts using multiple cluster observation techniques. We use a Fisher matrix analysis to study the improvements in the joint dark energy and cluster massobservables constraints resulting from combining cluster counts and clustering abundances measured with different techniques. We use our formalism to forecast the constraints in O DE and w from combining optical and sz cluster counting on a 4000 sq. degree patch of sky. We find that this joint "selfcalibration" yields ~ 4164% better constraints on O DE and w compared to simply adding the Fisher matrices of the individually selfcalibrated counts. The joint constraints are less sensitive to variations in the mass threshold or maximum redshift range. A byproduct of our technique is that the correlation between different massobservables is well constrained without the need of additional priors on its value. Finally, we compare results from combining optical and sz surveys to two szlike surveys and find that combining surveys with different properties yields the best constraints. Correlating Optical and SunyaevZel'dovich Measurements of Galaxy Clusters in the SZA Survey The interferometric cmwave data from the SunyaevZel'dovich Array survey were crosscorrelated with galaxy clusters identified in a companion R and z ' optical imaging program conducted at Kitt Peak National Observatory with the Mosaic1 camera on the 4m Mayall telescope. These optical data were reduced using pipelines designed for the similar data set of the RCS survey to produce a catalog of clusters. The average SZ signal correlated with this set of clusters and several subsamples was measured. A negative correlation between the optical and radio data of the SunyaevZel'dovich Array survey was measured at the 1sigma level. Based on the optical mass proxies of detection significance and richness, the estimated average mass of the cluster samplea is approximately 1 x 10 14 solar masses. The average correlated SZ signal is consistent with this estimate, as is the temperature decrement measurement recovered from an MCMC analysis of a betamodel fit to the lowrichness clusters. In all, there is a consistent picture of the average SZ signal being able to be recovered for an ensemble of clusters despite the mass of all systems individually being below the detection threshold of the SZA survey. 