Department in the News

Astronomers May Have Detected Neutron Star Being Consumed by Black Hole
May 15, 2019
Click on the image to enlarge
WWCI, by Paul Caine
Astronomers in the U.S. and Italy believe they may have detected gravitational waves created when a black hole swallowed a neutron star. If the discovery is confirmed, it would be the first evidence that black holes and neutron stars can pair up to form binary systems.

The apparent detection was made on April 26 by the twin LIGO observatories in the U.S. and the Virgo detector in Italy.

Neutron stars are extremely dense stars formed when massive stars collapse.

"A neutron star is kind of the most extreme star that is possible," said Daniel Holz, a University of Chicago astrophysicist who is part of the LIGO team. "When a star starts collapsing the first stop along the way is a white dwarf and that's when electrons inside the star are pushing against each other and that can hold the star up. But if the star is big enough it will continue to collapse and you'd end up with something called a neutron star. And that's when the neutrons are actually pushing against each other. And as far as we know that is it, that's the densest matter that is possible."

Related:
Department members: Daniel E. Holz
Scientific projects: Laser Interferometer Gravitational-wave Observatory

Astronomers Take First-Ever Picture of a Black Hole
April 11, 2019
Click on the image to enlarge
Chicago Tonight (WTTW), by Paul Caine
An international team of astronomers has for the very first time captured an image of one of the most exotic and mysterious objects in the universe: a black hole.

Ever since Einstein's theory of relativity first predicted them, black holes have captured the imagination of the public and scientists alike.

A black hole is an object so dense, literally so massive, that the gravity it generates is so strong that light itself cannot escape and even the fabric of space-time breaks down.

"Black holes are one of those things where the public fascination and the scientific fascination completely align," said Daniel Holz, an astrophysicist at the University of Chicago and part of the LIGO team that in 2016 first detected gravitational waves from the collision of two black holes.

"From a scientific perspective they are also incredibly extreme. The equations are very clean. You end up with this solution. But the solution is so crazy - the idea that there are black holes - that even Einstein said they are probably not real," said Holz.

But real they are and now we have a picture of one.

Carlstrom said that his first reaction on seeing the image of the black hole for the first time was: "Holy Smokes! It really works."

"For the people who have worked in this field for decades it's just disbelief that it is really there," he added.

Related:
Department members: John E. Carlstrom, Daniel E. Holz
Scientific projects: Laser Interferometer Gravitational-wave Observatory, South Pole Telescope

Astronomers capture historic first image of a black hole
April 10, 2019
The first image ever captured of a black hole.
Courtesy of EHT Collaboration
Click on the image to enlarge
UChicago News
South Pole Telescope contributes to observations of black hole in distant galaxy

The Event Horizon Telescope - a planet-scale array of eight ground-based radio telescopes forged through international collaboration - was designed to capture images of a black hole. On April 10, in coordinated news conferences across the globe, researchers reveal that they have succeeded, unveiling the first direct visual evidence of a supermassive black hole and its shadow.

This breakthrough was announced April 10 in a series of six papers published in a special issue of The Astrophysical Journal Letters. The image reveals the black hole at the center of Messier 87, a massive galaxy in the nearby Virgo galaxy cluster. This black hole sits 55 million light-years from Earth and has a mass 6.5 billion times that of the sun.

The EHT links telescopes around the globe, including the University of Chicago-run South Pole Telescope, to form an unprecedented Earth-sized "virtual telescope" with unprecedented sensitivity and resolution. The EHT is the result of years of international collaboration, and offers scientists a new way to study the most extreme objects in the universe predicted by Einstein's theory of general relativity.

"The South Pole Telescope's location at the southernmost point of the Earth makes it an important component of the global EHT network," said Prof. John Carlstrom, who directs the telescope. "Although M87 is not visible from the South Pole, it is a crucial player in observing other black holes, such as the massive one at the center of our own galaxy."

Related:
Department members: John E. Carlstrom
Scientific projects: South Pole Telescope

How to use gravitational waves to measure the expansion of the universe
April 2, 2019
Prof. Daniel Holz
University of Chicago News Office, by Louise Lerner
Prof. Daniel Holz discusses a new way to calculate the Hubble constant, a crucial number that measures the expansion rate of the universe and holds answers to questions about the universe's size, age and history.

Related:
Department members: Daniel E. Holz
Scientific projects: Laser Interferometer Gravitational-wave Observatory

Lifetime Achievement Award
March 13, 2019
Wendy L. Freedman, John and Marion Sullivan University Professor in Astronomy and Astrophysics, University of Chicago
Click on the image to enlarge
The Chicago Council on Science and Technology
Wendy Freedman is a renowned astronomer who was instrumental in precisely measuring the Hubble constant and determining the age of the universe. Freedman received both her BSc and PhD in astronomy and astrophysics from the University of Toronto. In 1984 she accepted a position as a postdoctoral fellow at the Carnegie Observatories in Pasadena, California. In 1987 Freedman became the first woman to join Carnegie's permanent staff, and in 2003 she became its director. She also initiated the Giant Magellan Telescope project and served as chair of its board of directors from the project's inception in 2003 until 2015. In 2014 she joined the faculty of the University of Chicago as the John and Marion Sullivan University Professor of Astronomy and Astrophysics. Freedman first rose to prominence leading the Hubble Space Telescope Key Project, which began in the mid-1980s and involved an international group of some 30 astronomers. The team used the Hubble telescope to study Cepheid variable stars in order to estimate intergalactic distances and thus determine the expansion rate of the universe.

Related:
Department members: Wendy L. Freedman
Scientific projects: Giant Magellan Telescope

Edward 'Rocky' Kolb to direct Kavli Institute for Cosmological Physics
February 27, 2019
Prof. Rocky Kolb
Photo by Jason Smith
UChicago News
Cosmologist to lead center dedicated to study of origin and evolution of universe

The University of Chicago has named Edward W. 'Rocky' Kolb as director of its Kavli Institute for Cosmological Physics, a leading center dedicated to deepening our understanding of the origin and evolution of the universe and the laws that govern it.

Kolb, the Arthur Holly Compton Distinguished Service Professor in the Department of Astronomy and Astrophysics, succeeds Michael S. Turner as director, effective April 1. Turner, the Bruce V. & Diana M. Rauner Distinguished Service Professor in the Department of Astronomy and Astrophysics, has served in the role since 2010.

"We are thrilled that Rocky Kolb will lead KICP. Kolb, together with current KICP director Michael Turner, helped define a new discipline at the intersection of cosmology, particle physics and astrophysics," said Angela V. Olinto, dean of the Physical Sciences Division. "Kolb's extensive leadership experience will guarantee a brilliant future for KICP."

The institute was created as an interdisciplinary center to bridge astronomy and physics, exploring physics ranging from the subatomic scale to the birth and constitution of the cosmos. It is an international hub for cosmology and has furthered the careers of many young scientists.

At the institute, UChicago researchers tackle questions about the nature of dark energy and dark matter, the first moments of the universe, and nature's highest-energy particles. Members lead some of the most significant international astronomy projects in the field, such as the Dark Energy Survey, an unprecedented survey of distant galaxies to better understand the mysterious force accelerating the expansion of the universe; the South Pole Telescope, which with its third-generation camera will be among the most sensitive instruments observing the cosmic microwave background; and the Giant Magellan Telescope, a giant ground-based telescope under construction in Chile that is expected to produce images that are 10 times sharper than those from the Hubble Space Telescope.

"Rocky Kolb is an eminent cosmologist, known for his contributions to the study of the very early universe," said Kevin Moses, vice president of science programs at the Kavli Foundation. "He has had a distinguished career at the University of Chicago and Fermi National Accelerator Laboratory and is a longtime member of KICP. Rocky will continue the strong tradition of leadership at KICP, paving the way for further understanding of our cosmos."

Kolb is a fellow of the American Academy of Arts and Sciences and the American Physical Society. He has received numerous honors, including the Dannie Heineman Prize for Astrophysics, which he shared with Turner for their work to understand the early universe. Kolb has formerly served as dean of the Physical Sciences Division, chair of the Department of Astronomy and Astrophysics, and director of Fermi National Accelerator Laboratory's Particle Astrophysics Center.

The University established the Center for Cosmological Physics in 2001 with National Science Foundation support. The center was renamed the Kavli Institute for Cosmological Physics in 2004 in honor of Fred Kavli, who through the Kavli Foundation provided $7.5 million to endow the institute and support its programs.

UChicago's Kavli Institute works closely with the other Kavli Institutes in astrophysics at Stanford University, Peking University, Massachusetts Institute of Technology, University of California, Berkeley; and the University of Cambridge.

Related:
Department members: Edward ''Rocky'' W. Kolb, Angela V. Olinto, Michael S. Turner
Scientific projects: Dark Energy Survey, Giant Magellan Telescope

Big Brains podcast: "What Ripples in Space-Time Tell Us About the Universe with Daniel Holz"
January 24, 2019
Prof. Daniel Holz
Click on the image to enlarge
UChicago News
UChicago cosmologist discusses discovery of gravitational waves and colliding black holes

All around us in the universe, black holes are smashing into each other with tremendous force. These events are so powerful that they cause ripples in the fabric of space-time - and these ripples, called gravitational waves, travel hundreds of millions of light-years across the universe, eventually passing through the Earth.

Prof. Daniel Holz and fellow scientists at LIGO knew that detecting these waves would take us closer to figuring out many profound mysteries, including the size, age and composition of the universe. They built the most sensitive machine ever constructed, detected the waves and opened up an entirely new window on the universe.

In this time-and-space-bending episode of Big Brains, the UChicago cosmologist talks black holes, testing Einstein's predictions, and the threat of nuclear annihilation.

Related:
Department members: Daniel E. Holz
Scientific projects: Laser Interferometer Gravitational-wave Observatory

After mapping millions of galaxies, Dark Energy Survey finishes data collection
January 15, 2019
UChicago News
For the past six years, Fermi National Accelerator Laboratory has been part of an international effort to create an unprecedented survey of distant galaxies and better understand the nature of dark energy - the mysterious force accelerating the expansion of the universe.

After scanning about a quarter of the southern skies over 800 nights, the Dark Energy Survey finished taking data on Jan. 9. It ends as one of the most sensitive and comprehensive surveys of its kind, recording data from more than 300 million distant galaxies.

Fermilab, an affiliate of the University of Chicago, served as lead laboratory on the survey, which included more than 400 scientists and 26 institutions. The findings created the most accurate dark matter map of the universe ever made, shaping our understanding of the cosmos and its evolution. Other discoveries include the most distant supernova ever detected, a bevy of dwarf satellite galaxies orbiting our Milky Way, and helping to track the first-ever detection of gravitational waves from neutron stars back to its source.

According to Dark Energy Survey Director Rich Kron, a Fermilab scientist and professor at the University of Chicago, those results - and the scientists who made them possible - are where much of the real accomplishment of the Dark Energy Survey lies.

"The first generations of students and postdoctoral researchers on the Dark Energy Survey are now becoming faculty at research institutions and are involved in upcoming sky surveys," Kron said. "The number of publications and people involved are a true testament to this experiment. Helping to launch so many careers has always been part of the plan, and it's been very successful."

Now the job of analyzing that data takes center stage, providing opportunities for new breakthroughs. The survey has already released a full range of papers based on its first year of data, and scientists are now diving into the rich seam of catalogued images from the first several years of data, looking for clues to the nature of dark energy.

The first step in that process, according to Fermilab scientist Josh Frieman, a professor at UChicago and former director of the Dark Energy Survey, is to find the signal in all the noise.

"We're trying to tease out the signal of dark energy against a background of all sorts of non-cosmological stuff that gets imprinted on the data,' Frieman said. "It's a massive ongoing effort from many different people around the world."

Related:
Department members: Joshua A. Frieman, Richard G. Kron
Scientific projects: Dark Energy Survey

Distortion
December 1, 2018
Brian Nord, visiting research assistant professor in the UChicago Department of Astronomy and Astrophysics
University of Chicago Magazine, by Brian Nord, Maureen Searcy
Astrophysicist Brian Nord looks for lenses through AI eyes.

Brian Nord is a visiting research assistant professor in the UChicago Department of Astronomy and Astrophysics, an associate scientist in the Machine Intelligence Group at Fermilab, and a senior member of the Kavli Institute for Cosmological Physics. He is a leader in the institute's Space Explorers educational program for high school students and a cofounder of Deep Skies, a collaborative research group that applies artificial intelligence to astrophysics.

Related:
Department members: Brian Nord

Studying the stars with machine learning
November 12, 2018
Click on the image to enlarge
Symmetry Magazine, by Evelyn Lamb
To keep up with an impending astronomical increase in data about our universe, astrophysicists turn to machine learning.

Kevin Schawinski had a problem.

In 2007 he was an astrophysicist at Oxford University and hard at work reviewing seven years' worth of photographs from the Sloan Digital Sky Survey - images of more than 900,000 galaxies. He spent his days looking at image after image, noting whether a galaxy looked spiral or elliptical, or logging which way it seemed to be spinning.

Technological advancements had sped up scientists' ability to collect information, but scientists were still processing information at the same rate. After working on the task full time and barely making a dent, Schawinski and colleague Chris Lintott decided there had to be a better way to do this.

There was: a citizen science project called Galaxy Zoo. Schawinski and Lintott recruited volunteers from the public to help out by classifying images online. Showing the same images to multiple volunteers allowed them to check one another's work. More than 100,000 people chipped in and condensed a task that would have taken years into just under six months.

Citizen scientists continue to contribute to image-classification tasks. But technology also continues to advance.

The Dark Energy Spectroscopic Instrument, scheduled to begin in 2019, will measure the velocities of about 30 million galaxies and quasars over five years. The Large Synoptic Survey Telescope, scheduled to begin in the early 2020s, will collect more than 30 terabytes of data each night - for a decade.

"The volume of datasets [from those surveys] will be at least an order of magnitude larger," says Camille Avestruz, a postdoctoral researcher at the University of Chicago.

To keep up, astrophysicists like Schawinski and Avestruz have recruited a new class of non-scientist scientists: machines.

Researchers are using artificial intelligence to help with a variety of tasks in astronomy and cosmology, from image analysis to telescope scheduling.

Superhuman scheduling, computerized calibration
Artificial intelligence is an umbrella term for ways in which computers can seem to reason, make decisions, learn, and perform other tasks that we associate with human intelligence. Machine learning is a subfield of artificial intelligence that uses statistical techniques and pattern recognition to train computers to make decisions, rather than programming more direct algorithms.

In 2017, a research group from Stanford University used machine learning to study images of strong gravitational lensing, a phenomenon in which an accumulation of matter in space is dense enough that it bends light waves as they travel around it.

Because many gravitational lenses can't be accounted for by luminous matter alone, a better understanding of gravitational lenses can help astronomers gain insight into dark matter.

In the past, scientists have conducted this research by comparing actual images of gravitational lenses with large numbers of computer simulations of mathematical lensing models, a process that can take weeks or even months for a single image. The Stanford team showed that machine learning algorithms can speed up this process by a factor of millions.

Schawinski, who is now an astrophysicist at ETH Zurich, uses machine learning in his current work. His group has used tools called generative adversarial networks, or GAN, to recover clean versions of images that have been degraded by random noise. They recently published a paper about using AI to generate and test new hypotheses in astrophysics and other areas of research.

Another application of machine learning in astrophysics involves solving logistical challenges such as scheduling. There are only so many hours in a night that a given high-powered telescope can be used, and it can only point in one direction at a time. "It costs millions of dollars to use a telescope for on the order of weeks," says Brian Nord, a physicist at the University of Chicago and part of Fermilab's Machine Intelligence Group, which is tasked with helping researchers in all areas of high-energy physics deploy AI in their work.

Related:
Department members: Brian Nord

Flash Center turns 20, welcomes new director
October 29, 2018
Petros Tzeferacos, new director of the Flash Center for Computational Science
PSD News
October marks the 20th anniversary of the Flash Center for Computational Science. The center is the home of FLASH, a community code with applications in fields ranging from astrophysics to engineering and biology. The center does more than develop software for simulations, however; it is also a hub for research on high-energy density physics and laboratory astrophysics.

As the center celebrates its 20th anniversary, Petros Tzeferacos, research assistant professor in the Department of Astronomy and Astrophysics at the University of Chicago, will step into the role of director of the center. After serving as director for 15 years, Don Lamb, the Robert A. Millikan Distinguished Service Professor Emeritus in the Department of Astronomy and Astrophysics, will become associate director.

The birth of a versatile framework
The center was founded in 1998 under the directorship of Robert Rosner, the William E. Wrather Distinguished Service Professor in the Department of Astronomy and Astrophysics, as part of the Accelerated Strategic Computing Initiative (ASCI) - a research program funded by the U.S. Department of Energy (DOE) to jumpstart the development of high-performance physics codes in the national labs and academia. Under Rosner's and Lamb's leadership, researchers in the center developed FLASH to study astrophysical processes that involved nuclear reactions, including supernovae explosions, x-ray bursts, and more. "Twenty years later, FLASH is being used by more than 3,000 scientists around the world to do cutting-edge research in plasma physics and astrophysics," said Tzeferacos.

In 2009, the DOE brought online the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory, the most energetic laser in the world, and made it available to academic researchers. Lamb and the Flash Center were asked by the DOE to enable the code to simulate experiments at this facility, providing researchers with an open tool to design and tune their experiments before executing them with high-energy lasers at NIF and similar labs across the globe.

According to Tzeferacos, the code's applications have continued to expand since then. "That's the beauty of FLASH," he said. "It's a versatile framework with which you can target a number of scientific applications, from fundamental plasma physics to proto-planetary disks, to galaxy formation simulations and cosmology, true to the diverse research in our department and aligned with the scientific goals of its faculty".

Turbulent dynamo and beyond
Tzeferacos was trained as a theoretical astrophysicist and developed a strong interest in applied mathematics while at the University of Turin in Italy. He joined the Flash Center in 2012 with the dream of studying the origin of cosmic magnetic fields in the lab. For decades, researchers had theorized that a process called 'turbulent dynamo' is responsible for amplifying cosmic magnetic fields to the magnitudes observed today in the universe. Recreating the necessary conditions for turbulent dynamo to work in a laboratory had been a long sought-after and challenging goal until the Flash Center and its collaborators from the University of Oxford began their concerted research effort.

Several years of simulations with FLASH and experiments at the most powerful laser facilities in the world enabled Tzeferacos and his colleagues to demonstrate the turbulent dynamo mechanism in a controlled laboratory environment for the first time. Shortly after the paper was published, Lamb lauded the accomplishment: "People have dreamed of doing this experiment with lasers for a long time, but it really took the ingenuity of this team to make this happen."

Under Tzeferacos' leadership, the center's scientists are expanding the physics and algorithms of FLASH to model plasma physics experiments with pulsed-power devices and to study fundamental astrophysical processes in magnetized plasmas. In addition, Flash Center researchers are restructuring the code to take advantage of the new supercomputing platforms that will usher in the exascale computing era. "High performance computing will always be a part of the centerís scope," Tzeferacos said.

According to Tzeferacos, the training and mentoring of young researchers is central to the Flash Centerís mission. "The center has trained scores of postdocs, graduate students, and undergraduates to make sure that the future generation of scientists is well-versed in numerical modeling and code development," he said.

Tzeferacos is excited about the future of the center. "The Flash Center and UChicago's Department of Astronomy and Astrophysics are a place where a unique synergy of plasma astrophysics and laboratory astrophysics can be realized," he said. "By modeling both astrophysical phenomena and the laboratory experiments that reveal their fundamental physical processes, we are creating a virtuous cycle that will lead to exciting discoveries and new understanding of the workings of the universe."

Related:
Department members: Donald Q. Lamb, Robert Rosner, Petros Tzeferacos
Scientific projects: Flash Center for Computational Science

Gravitational waves could soon provide measure of universe's expansion
October 23, 2018
UChicago News, by Louise Lerner
UChicago study: New LIGO readings could improve disputed measurement within 5-10 years

Twenty years ago, scientists were shocked to realize that our universe is not only expanding, but that it's expanding fasterover time.

Pinning down the exact rate of expansion, called the Hubble constant after famed astronomer and UChicago alumnus Edwin Hubble, has been surprisingly difficult. Since then scientists have used two methods to calculate the value, and they spit out distressingly different results. But last year's surprising capture of gravitational waves radiating from a neutron star collision offered a third way to calculate the Hubble constant.

That was only a single data point from one collision, but in a new paper published Oct. 17 in Nature, three University of Chicago scientists estimate that given how quickly researchers saw the first neutron star collision, they could have a very accurate measurement of the Hubble constant within five to ten years.

"The Hubble constant tells you the size and the age of the universe; it's been a holy grail since the birth of cosmology. Calculating this with gravitational waves could give us an entirely new perspective on the universe," said study author Daniel Holz, a UChicago professor in physics who co-authored the first such calculation from the 2017 discovery. "The question is: When does it become game-changing for cosmology?"

In 1929, Edwin Hubble announced that based on his observations of galaxies beyond the Milky Way, they seemed to be moving away from us - and the farther away the galaxy, the faster it was receding. This is a cornerstone of the Big Bang theory, and it kicked off a nearly century-long search for the exact rate at which this is occurring.

To calculate the rate at which the universe is expanding, scientists need two numbers. One is the distance to a faraway object; the other is how fast the object is moving away from us because of the expansion of the universe. If you can see it with a telescope, the second quantity is relatively easy to determine, because the light you see when you look at a distant star gets shifted into the red as it recedes. Astronomers have been using that trick to see how fast an object is moving for more than a century - it's like the Doppler effect, in which a siren changes pitch as an ambulance passes.

Related:
Department members: Daniel E. Holz
Department students: Maya Fishbach
Scientific projects: Laser Interferometer Gravitational-wave Observatory

Gravitational waves provide dose of reality about extra dimensions
September 18, 2018
In new study, UChicago astronomers find no evidence for extra spatial dimensions to the universe based on gravitational wave data.

Courtesy of NASA's Goddard Space Flight Center CI Lab
Click on the image to enlarge
UChicago News, by Louise Lerner
No evidence for extra spatial dimensions, UChicago scientists say

While last year's discovery of gravitational waves from colliding neutron stars was Earth-shaking, it won't add extra dimensions to our understanding of the universe -- not literal ones, at least.

University of Chicago astronomers found no evidence for extra spatial dimensions to the universe based on the gravitational wave data. Their research, published in the Journal of Cosmology and Astroparticle Physics, is one of many papers in the wake of the extraordinary announcement last year that LIGO had detected a neutron star collision.

The first-ever detection of gravitational waves in 2015, for which three physicists won the Nobel Prize last year, was the result of two black holes crashing together. Last year, scientists observed two neutron stars collide. The major difference between the two is that astronomers could see the aftermath of the neutron star collision with a conventional telescope, producing two readings that can be compared: one in gravity, and one in electromagnetic (light) waves.

"This is the very first time we've been able to detect sources simultaneously in both gravitational and light waves," said Prof. Daniel Holz. "This provides an entirely new and exciting probe, and we've been learning all sorts of interesting things about the universe."

Einstein's theory of general relativity explains the solar system very well, but as scientists learned more about the universe beyond, big holes in our understanding began to emerge. Two of these are dark matter, one of the basic ingredients of the universe; and dark energy, the mysterious force that's making the universe expand faster over time.

"This changes how a lot of people can do their astronomy."
- Astrophysicist Maya Fishbach

Scientists have proposed all kinds of theories to explain dark matter and dark energy, and "a lot of alternate theories to general relativity start with adding an extra dimension," said graduate student Maya Fishbach, a coauthor on the paper. One theory is that over long distances, gravity would "leak" into the additional dimensions. This would cause gravity to appear weaker, and could account for the inconsistencies.

The one-two punch of gravitational waves and light from the neutron star collision detected last year offered one way for Holz and Fishbach to test this theory. The gravitational waves from the collision reverberated in LIGO the morning of Aug. 17, 2017, followed by detections of gamma-rays, X-rays, radio waves, and optical and infrared light. If gravity were leaking into other dimensions along the way, then the signal they measured in the gravitational wave detectors would have been weaker than expected. But it wasn't.

It appears for now that the universe has the same familiar dimensions -- three in space and one of time -- even on scales of a hundred million light-years.

But this is just the beginning, scientists said. "There are so many theories that until now, we didn't have concrete ways to test," Fishbach said. "This changes how a lot of people can do their astronomy."

"We look forward to seeing what gravitational-wave surprises the universe might have in store for us," Holz said.

Other authors on the space-time study were Princeton's Kris Pardo and David Spergel.

Citation: "Limits on the number of space-time dimensions from GW170817." Pardo et al, Journal of Cosmology and Astroparticle Physics, July 23, 2018. doi: 10.1088/1475-7516/2018/07/048

Related:
Department members: Daniel E. Holz
Department students: Maya Fishbach
Scientific projects: Laser Interferometer Gravitational-wave Observatory

New leaders from Fermilab appointed for Dark Energy Survey
September 16, 2018
Prof. Richard Kron
Fermilab News
On Oct. 1, Fermilab and University of Chicago scientist Rich Kron begins his three-year term as director of the Dark Energy Survey, or DES, hosted by Fermilab. Fellow Fermilab scientist Tom Diehl will serve as deputy director.

From 2003-2008, Kron was director of the Sloan Digital Sky Survey, an astronomical survey in which Fermilab was heavily engaged until 2008. In 2010, he stepped into the role of DES deputy director. Now, as incoming director, he succeeds Fermilab and University of Chicago scientist Josh Frieman, who became head of the Fermilab Particle Physics Division earlier this year.

The Dark Energy Survey is a multinational, collaborative effort to map hundreds of millions of galaxies and stars to better understand dark energy, the phenomenon behind the increasingly rapid expansion of the universe. Using a powerful camera installed on a telescope on a Chilean mountaintop, DES researchers are creating detailed maps of the southern sky to uncover patterns in the distribution of celestial objects that reflect - or reveal - the impact of dark energy on the formation of structure in the universe. They are also discovering and measuring properties of several thousand supernovae - distant exploding stars - to chart dark energy's influence on the history of cosmic expansion. The data will help researchers narrow in on dark energy's nature.

As the new DES director, Kron will lead the 400-strong collaboration through its final data-taking season, which runs from September 2018 to January 2019.

"I'm honored to be given the opportunity to lead the Dark Energy Survey to the conclusion of its operations and the production of the final science results," Kron said. "My predecessor Josh Frieman capably led the collaboration through the past eight years, and I have learned a lot from him."

Related:
Department members: Joshua A. Frieman, Richard G. Kron
Scientific projects: Dark Energy Survey

UChicago-led collaboration installed sensitive new instrument in Antarctica
September 11, 2018
The aurora australis, or southern lights, appear over the South Pole telescope.
Photo by Robert Schwarz
Click on the image to enlarge
University of Chicago News Office
Deep in Antarctica, at the southernmost point on our planet, sits a 33-foot telescope designed for a single purpose: to make images of the oldest light in the universe.

This light, known as the cosmic microwave background, or CMB, has journeyed across the cosmos for 14 billion years -- from the moments immediately after the Big Bang until now. Because it is brightest in the microwave part of the spectrum, the CMB is impossible to see with our eyes and requires specialized telescopes.

The South Pole Telescope, specially designed to measure the CMB, is using its third-generation camera to carry out a multi-year survey to observe the earliest instants of the universe. Since 2007, the SPT has shed light on the physics of black holes, discovered a galaxy cluster that is making stars at the highest rate ever seen, redefined our picture of when the first stars formed In the universe, provided new insights into dark energy and homed in on the masses of neutrinos. This latest upgrade improves its sensitivity by nearly an order of magnitude -- making it among the most sensitive CMB instruments ever built.

Related:
Scientific projects: South Pole Telescope

NASA Should Lead a Large Direct Imaging Mission to Study Earth-Like Exoplanets, Says New Report
September 5, 2018
Click on the image to enlarge
The National Academies of Sciences, Engineering, and Medicine
"The NAS Exoplanet Strategy report outlines a vision for how to pursue some of the most compelling questions in modern astrophysics and planetary science, including the possible existence of life beyond our solar system."
- Prof. Jacob Bean, a member of the report committee

WASHINGTON - To answer significant questions about planetary systems, such as whether our solar system is a rare phenomenon or if life exists on planets other than Earth, NASA should lead a large direct imaging mission - an advanced space telescope - capable of studying Earth-like exoplanets orbiting stars similar to the sun, says a new congressionally mandated report by the National Academies of Sciences, Engineering, and Medicine.

The study of exoplanets - planets outside our solar system that orbit a star - has seen remarkable discoveries in the past decade. The report identifies two overarching goals in this field of science:
  • To understand the formation and evolution of planetary systems as products of star formation and characterize the diversity of their architectures, composition, and environments.
  • To learn enough about exoplanets to identify potentially habitable environments and search for scientific evidence of life on worlds orbiting other stars.

Based on these goals, the committee that authored the report found that our current knowledge of the range of characteristics of planets outside the solar system is substantially incomplete. A holistic approach to studying habitability in exoplanets, using both theory and observations, will ultimately be required to search for evidence of past and present life elsewhere in the universe.

While the committee recognized that developing a direct imaging capability will require large financial investments and a long time scale to see results, the effort will foster the development of the scientific community and technological capacity to understand myriad worlds. To detect a system analogous to our own Earth-sun system, the report recommends using instruments that enable direct imaging of an exoplanet by blocking the light emitted by the parent stars - such as a coronagraph or starshade.

In addition, ground-based astronomy - enabled by two U.S.-led telescopes - will also play a pivotal role in studying planet formation and potentially terrestrial worlds, the report says. The future Giant Magellan telescope (GMT) and proposed Thirty Meter Telescope (TMT) would allow profound advances in imaging and spectroscopy - absorption and emission of light - of entire planetary systems. They also could detect molecular oxygen in temperate terrestrial planets in transit around close and small stars, the report says.

The committee pointed out that the technology road map to enable the full potential of GMT and TMT in the study of exoplanets is in need of investments, and should leverage the existing network of U.S. centers and laboratories. To that end, the report recommends that the National Science Foundation invest in both telescopes and their exoplanet instrumentation to provide all-sky access to the U.S. community.

While missions like Kepler spacecraft have characterized a remarkable population of planets relatively close to their stars, our knowledge of worlds in the outer reaches of the universe is woefully lacking, the committee said. The report says WFIRST, the large space-based mission that received the highest priority in the Academies' 2010 decadal survey, will play two extremely valuable roles: first, it will permit a survey of planets farther from their stars than surveyed by Kepler and other missions. Second, it will enable a large direct imaging mission.

Although the radial velocity method - which measures the shift of the star as it orbits the center of mass of the planet system - will continue to provide essential mass and orbit information, its measurements are currently limited by variations in the surface of the star and imperfect calibration of the instruments, the report says. New instruments installed on large telescopes, substantial allocations of observing time, and collaboration between observers as well as theorists are some of the requirements for progress. To develop these methods and facilities for measuring the masses of temperate terrestrial planets orbiting sun-like stars, NASA and NSF should establish a strategic initiative in Extremely Precise Radial Velocities.

In addition, NASA should create a mechanism to systematically collect data on exoplanet atmospheres early in the James Webb Space Telescope mission. The committee also recommended building on the model of NASA's interdisciplinary collaboration initiative - Nexus for Exoplanet Science System - by supporting a cross-divisional research effort inviting proposals for interdisciplinary research.

The committee called on NASA to support a robust individual investigator program that includes grants for theoretical, laboratory, and ground-based telescopic investigations to fully realize the scientific payoff of exoplanet missions. The report also recognizes that discrimination and harassment exist in the scientific workforce and can affect the exoplanet research community, posing barriers to the participation of people from certain demographic groups. To maximize scientific potential and opportunities for excellence, institutions and organizations should take concrete steps to eliminate discrimination and harassment and to proactively recruit and retain scientists from underrepresented groups.

The study was sponsored by NASA. The National Academies of Sciences, Engineering, and Medicine are private, nonprofit institutions that provide independent, objective analysis and advice to the nation to solve complex problems and inform public policy decisions related to science, technology, and medicine. They operate under an 1863 congressional charter to the National Academy of Sciences, signed by President Lincoln.

More information

Related:
Department members: Jacob L. Bean
Scientific projects: Giant Magellan Telescope

NASA's New Probe Sails Into the Solar Wind
August 15, 2018
The Wall Street Journal, by Angela V. Olinto
The astrophysicist Eugene Parker found only doubters 60 years ago when he proposed that a type of "wind" flows from the sun. Now NASA is sending up a spacecraft. Now NASA is sending up a spacecraft named in his honor. The Parker Solar Probe, set to launch Saturday, will fly closer to the sun than any previous mission. It will investigate why the sunís atmosphere is hotter than the sun itself, how to protect earthly electric grids from space weather, and more.

Related:
Department members: Angela V. Olinto, Eugene N. Parker

NASA Parker Solar Probe, named after UChicago scientist, begins historic mission
August 12, 2018
The Parker Solar Probe launches from Cape Canaveral at 2:31 a.m. CDT on Aug. 12.
Photo by Bill Ingalls/NASA
Click on the image to enlarge
UChicago News, by Louise Lerner
Prof. Eugene Parker becomes first person to see launch of mission named in their honor.

At 2:31 a.m. CDT on Sunday, Aug. 12, NASA's Parker Solar Probe blasted off into the predawn darkness, on its way to explore the sun on a mission that will send it closer to our star than any previous spacecraft.

With its liftoff, University of Chicago Prof. Emeritus Eugene Parker became the first person to witness the launch of a namesake spacecraft. The Parker Space Probe is the first NASA mission named in honor of a living person.

"All I can say is wow, here we go," said Parker, who is the S. Chandrasekhar Distinguished Service Professor Emeritus in Physics at UChicago. "[Now I] really have to turn from biting my nails ... to thinking about all the interesting things which I don't know yet. We're in for some learning the next several years."

On a clear, muggy night at Cape Canaveral, with the occasional shooting star from the Perseids meteor shower streaking overhead, Parker watched from NASA's viewing terrace along with three generations of his family.

Cheers and applause erupted as the rocket climbed into the sky, and minutes later, shed its booster engines in a flare of light. After officials announced the spacecraft was safely on its way, the company hugged, shook hands and took celebratory sips of Parker Solar Pale Ale, made in honor of the occasion by local company Crystal Lake Brewing.

It was a humbling moment for Parker, who was attending his first NASA launch.

"It's a bit like the Taj Mahal. We've all seen pictures of the building and what a graceful structure it is, but ... video and paintings and so forth don't quite catch it somehow," Parker said. "It's in a different state when you're looking at the real thing."

"All I can say is wow, here we go. We're in for some learning the next several years."
- Prof. Emeritus Eugene Parker

NASA said the honor befits the magnitude of Parker's contributions to science. Parker's revolutionary scientific career began with his 1958 proposal of the "solar wind," which radically changed scientists' understandings of the solar system.

He suggested, and later NASA missions confirmed, that the sun radiates an intense stream of charged particles that travel throughout the solar system at supersonic speeds. This is visible as the halo around the sun during an eclipse, and it can affect missions in space as well as satellite communication systems on Earth.

The discovery reshaped our view of space, stars and their surroundings. It also established a new field of astrophysics, leading NASA last year to name its newest and most ambitious mission to the sun after Parker as a tribute to his work.

"We're so excited and proud that Eugene Parker's namesake mission, the Parker Solar Probe, launched this morning," said Angela Olinto, dean of the Division of the Physical Sciences at UChicago. "By first proposing the concept of the solar wind in 1958, Parker revolutionized our understanding of the solar system, and we eagerly await data from this mission that will help us continue to unravel the mysteries of our universe."

Once it leaves Earth, the Parker Solar Probe will use seven flybys of Venus to slowly reduce its orbital distance and drop closer to the sun - eventually flying into the corona, facing searing temperatures of more than a million degrees Fahrenheit.

The data it collects will provide clues to explore the still-mysterious physics behind the sun - including questions first raised by Parker's work a half-century ago, such as the nature of the mechanism that flings the solar wind off the sun.

Scientists around the world are eagerly awaiting the results, which will shed light on everything from the magnetic underpinnings of stars to the conditions that would await astronauts traveling to Mars to why the corona is so much hotter than the surface of the sun.

"The science has started on its way, and it won't stop until we know a lot more about the structure and heating of the solar corona," Parker said.

Among the company at the Kennedy Space Center was Johns Hopkins Applied Physics Laboratory scientist Nicola Fox, the Parker Solar Probe mission scientist.

"I can't think of anybody who would be more deserving of having a mission named after them than Gene Parker," she said at a news conference in Chicago held before the launch. "Physics 101 is Gene Parker's papers. It doesn't matter what you do, Gene Parker turns up somewhere in that literature."

The solar wind was only the first of Parker's discoveries; he went on to study other phenomena, such as cosmic rays and the magnetic fields of galaxies. His name is littered across the field of astrophysics: the Parker Instability, which describes magnetic fields in galaxies; the Parker equation, which describes particles moving through plasmas; the Sweet-Parker model of magnetic fields in plasmas; and the Parker limit on the flux of magnetic monopoles.

Related:
Department members: Angela V. Olinto, Eugene N. Parker

Countdown begins for launch of NASA mission named after UChicago Prof. Eugene Parker
August 6, 2018
Prof. Emeritus Eugene Parker speaks at NASAís May 2017 announcement of the Parker Solar Probe. The ambitious mission to study the sun will launch in August 2018.
Photo by Jean Lachat
Click on the image to enlarge
UChicago News
Pioneering astrophysicist plans to become first person to watch his namesake spacecraft launch

On Aug. 11, the launch window opens for NASA's Parker Solar Probe to begin its journey to the corona of the sun, a mission that will bring a spacecraft closer to the sun than any ever before.

Watching from the Kennedy Space Center in Florida will be University of Chicago Prof. Emeritus Eugene Parker, who has dedicated his life to unraveling the sun's mysteries. He is the first living person to have a spacecraft named after him and is now preparing at the age of 91 to become the first person to see his namesake mission thunder into space.

Parker is best known for his pioneering research on the sun, which radically changed scientists' understandings of the solar system. In the 1950s, he proposed the concept of solar wind, showing that the sun radiates a constant and intense stream of charged particles that travel throughout the solar system at about one million miles per hour. This is visible as the halo around the sun during an eclipse, and it can affect missions in space as well as satellite communication systems on Earth.

"The solar probe is going to a region of space that has never been explored before. It's very exciting that we'll finally get a look," said Parker, who was on the UChicago faculty from 1955 to 1995. "One would like to have some more detailed measurements of what's going on in the solar wind. I'm sure that there will be some surprises. There always are."

Parker's theory of the solar wind challenged conventional understandings of the sun, causing scientists at the time to dismiss his work. Parker barely managed to publish the original 1958 paper that presented his theory. But he firmly defended his work, and he was ultimately proven correct in 1962 with data collected by the first successful interplanetary mission, the Mariner II space probe to Venus.

"Gene Parker's story is about challenging assumptions. He came up with a new theory and proved that theory through meticulous, scientific calculations," said Angela Olinto, dean of the Division of the Physical Sciences at UChicago. "Gene carries on a great tradition at UChicago of questioning the status quo to make discoveries and create whole new fields of science."

NASA last year named its most important mission to the sun after Parker as a tribute to his work, which established a new field of solar research. He stands as a giant among researchers who continue to push the boundaries of science, such as UChicago scientists Wendy Freedman, who was first to precisely measure the expansion rate of the universe, and Michael Turner, who coined the term dark energy.

The Parker Solar Probe is scheduled to launch during a period that opens Aug. 11. The spacecraft will use seven flybys of Venus to slowly reduce its orbital distance and drop closer to the sun. Three of the spacecraft's orbits will bring it within 3.83 million miles of the sun's surface - approximately seven times closer than any other previous mission.

The spacecraft's observations will help scientists understand why the corona is hotter than the sun's surface, how the solar wind is accelerated and what drives intense, energetic particles that can affect astronauts or interfere with onboard satellite electronics, among other questions.

"I'm sure that there will be some surprises. There always are."
- Prof. Emeritus Eugene Parker

Although Parker is the first living person to have a spacecraft named after him, he is the fifth of his peers at UChicago to have the honor, with the other four having won the recognition posthumously. They include alumnus Edwin Hubble, AB 1910, PhD 1917, with the Hubble Space Telescope; Nobel laureate Subrahmanyan Chandrasekhar, a UChicago professor who worked with Parker, with the Chandra X-ray Observatory; Enrico Fermi, a Nobel laureate and UChicago professor, with the Fermi Gamma-Ray Telescope; and Nobel laureate Arthur Holly Compton, a UChicago professor, with the Compton Gamma Ray Observatory.

Those who want to view the launch can watch on NASA's livestream. The daily launch window runs from 3:15 to 5:15 a.m. CST starting on Aug. 11.

Related:
Department members: Wendy L. Freedman, Angela V. Olinto, Eugene N. Parker, Michael S. Turner

NASA mission to sun honors pioneering UChicago physicist
August 1, 2018
NASA will soon launch the Parker Solar Probe, the first NASA mission named after a living person: Prof. Emeritus Eugene Parker, in recognition of his discovery of solar wind
Click on the image to enlarge
UChicago News
Prof. Eugene Parker, who redefined how we view the sun, to witness launch of solar mission

Prof. Eugene Parker was 31 years old in 1958 when he proposed a radical idea that changed the way we think about the sun and solar system. The space between planets was not empty, he said, but filled with a "solar wind": an expanding force of particles flowing off the sun out through the farthest reaches of the solar system.

Like other scientists with outlandish theories about the sun before him, he was not believed at first.

"The first reviewer on the paper said, 'Well I would suggest that Parker go to the library and read up on the subject before he tries to write a paper about it. Because this is utter nonsense,'" Parker, the S. Chandrasekhar Distinguished Service Professor Emeritus in Physics at the University of Chicago, recalled with a laugh.

More than half a century later, in honor of his work, which opened a new field of astrophysics, Parker is the first living person to have a NASA spacecraft named after him. This month, he will travel to Cape Canaveral to watch the launch of the Parker Solar Probe, which will fly closer to the sun than any mission - all to investigate the mysterious workings of the sun and the solar wind that Parker proposed decades ago.

"Eugene Parker had a vision of the solar system that was way ahead of its time," said Prof. Angela Olinto, dean of the physical sciences at UChicago. "His work basically laid the foundation of a whole new field, and he serves as an inspiration to all of us here at the University of Chicago who are working to expand the boundaries of human knowledge."

"His work basically laid the foundation of a whole new field."
- Prof. Angela Olinto, dean of the physical sciences at UChicago

A far-out idea
Parker was a young UChicago assistant professor when he began looking into an open question in astrophysics at the time: whether there were particles coming off the sun. It seemed unlikely, since Earth's atmosphere doesn't flow out into space, and presumably the same would be true for the sun. But scientists had noticed an odd phenomenon: The tails of comets, no matter which direction they traveled, always pointed away from the sun - almost as though something was blowing them away.

Parker sat down and began to do the math. He calculated that if the sun's corona was a million degrees, there had to be a flow of particles expanding away from its surface, eventually becoming extremely fast - faster than the speed of sound. The idea was unheard of at the time, but that's what the physics was telling Parker.

"And that's the end of the story, except it isn't, because people immediately said, 'I don't believe it,'" Parker said.

He wrote a paper and submitted it to the Astrophysical Journal; the response from scientific reviewers was swift and scathing.

"You must understand how unbelievable this sounded, when he proposed it," said Fausto Cattaneo, UChicago professor of astronomy and astrophysics. "That this wind not only exists, but is traveling at supersonic speed. It is extraordinarily difficult to accelerate anything to supersonic speeds in the laboratory, and there is no means of propulsion."

Luckily, the editor of the journal at the time was eminent astrophysicist Subrahmanyan Chandrasekhar, Parker's colleague at the University of Chicago. Chandrasekhar didn't like the idea either, but the future Nobel laureate couldn't find anything wrong with the math, so he overruled the reviewers and published the paper.

And there it sat until 1962, when a NASA spacecraft to Venus called Mariner II took readings on its journey. The results were unambiguous. "There was the solar wind, blowing 24/7," Parker said.

"You must understand how unbelievable this sounded, when he proposed it."
- Prof. Fausto Cattaneo

Mission to the sun
The discovery reshaped our picture of space and the solar system. Scientists came to understand that this wind not only flows past Earth, but throughout the solar system and beyond. It also both protects and threatens us.

"The solar wind magnetically blankets the solar system, protecting life on Earth from even higher-energy particles coming from elsewhere in the galaxy," Olinto said. "But it also affects the sophisticated satellite communications we have today. So understanding the precise structure and dynamics and evolution of the solar wind is crucial for civilization as a whole."

Thus scientists have been eager for a mission to the sun since space travel first became possible. But the extreme temperatures meant they needed to wait until the development of technology that could shield the spacecraft from the intense heat and radiation of the sun. The Parker Solar Probe's heat shield, made of just under five inches of a cutting-edge carbon composite, will keep the craft's delicate instruments at a gentle 85 degrees Fahrenheit even as the corona rages at 3 million degrees Fahrenheit outside.

It will need it, because when the spacecraft launches in August, it will begin a seven-year journey to the blisteringly hot corona, visible as the halo around the sun during an eclipse. It will be by far the closest we've ever come to a star, and scientists are itching to get a look at the physics close-up.

Two of the most pressing questions for this mission, which date back to Parker's earliest work: Why is the corona so much hotter than the surface of the sun? How does the solar wind accelerate away from the sun?

A deeper understanding of these processes will help forecast space weather that affects life here on Earth, understand the conditions that astronauts in orbit above our world and journeying for long distances would face, and even provide clues about what kinds of star activity might favor habitability on distant planets.

Parker is looking forward to the data.

"You're exploring unknown territory, and you can be darn sure there are some surprises waiting for us there," he said. "Things are never quite what you thought they were."

'Gene Parker is like God'
Over his career, Parker went on to study other phenomena, such as cosmic rays and the magnetic fields of galaxies. His name is littered across the field of astrophysics: the Parker Instability, which describes magnetic fields in galaxies; the Parker equation, which describes particles moving through plasmas; the Sweet-Parker model of magnetic fields in plasmas, the Parker limit on the flux of magnetic monopoles.

"In our field, Gene Parker is like God," said Cattaneo. "Most people would have one good idea and rest on that. This guy had God knows how many. There are not many people like him."

In announcing the new name of the mission at the University last year, NASA said that given Parker's accomplishments within the field and how closely aligned this mission is with his research, the decision was made to honor him prior to launch in order to draw attention to his important contributions to heliophysics and space science.

"We're very proud to be able to carry Gene's name with us on this amazing voyage of discovery," said Nicola Fox, Parker Solar Probe project scientist, of the Johns Hopkins University Applied Physics Laboratory.

"We're very proud to be able to carry Gene's name with us on this amazing voyage of discovery."
- Nicola Fox, Parker Solar Probe project scientist

Asked for advice for those early in their careers, Parker said, "I have never made a significant proposal, but what there was a crowd who said 'Ain't so, can't possibly be.' If you do something new or innovative, expect trouble. But think critically about it because if you're wrong, you want to be the first one to know that."

Parker, who retired from the University in 1995, plans to fly to Florida with his family to watch the spacecraft launch.

"I've been delighted to be alive in this period of time because of all the wonderful things that have been happening," he said. "I'm just happy to be born at the right time."

Related:
Department members: Fausto Cattaneo, Angela V. Olinto, Eugene N. Parker

Parker Solar Probe, flying to the sun, is named after U. of C.'s own
July 31, 2018
University of Chicago professor emeritus Eugene Parker at his home in Chicago's Hyde Park neighborhood on July 27.

Credit: Chris Sweda / Chicago Tribune
Click on the image to enlarge
Chicago Tribune, by Steve Johnson
From his windows up high in a Hyde Park retirement home, Eugene Parker can see, fittingly, the great mass of the Museum of Science and Industry and the distinctive rooftops of the University of Chicago.

He also can watch the sun as it rises over the lake and sets in the west, which is even more fitting because as much as any human alive, Parker is responsible for our understanding of the star that keeps us alive.

As a young U. of C. scientist in the mid-1950s, he performed some calculations and realized there must be a "solar wind" - his term - propelling material outward from the sun and affecting the entire solar system. The astronomical community scoffed at this upstart insight, and then, within a few years, early space missions proved it true.

As a 91-year-old emeritus professor in 2018, he will be at Cape Canaveral next month to watch NASA launch its Parker Solar Probe, the agency's first mission named for a living person.

NASA broke protocol, said Thomas Zurbuchen, head of the agency's Science Mission Directorate, because of "the unique impact Parker has had in the entire portfolio. We have 107 missions ongoing right now," either in operation or in planning. "Thirty-five of them are directly related to Parker's work."

"It's wonderful," said Nicola Fox, project scientist for the solar probe, which will bring science far closer to the sun than it's ever been. "He's going to stand and he's going to watch his legacy mission leave the planet and start its journey."

"He is the father of the mission. It was his paper. It was his science. It was his discovery that led to science's knowing the (sun's) corona was such an interesting place to go visit, and it's taken 60 years to be able to do this daring plunge into the sun's atmosphere."

Parker, though, isn't much for the fanfare.

In the home he and his wife share, an end table carried about the only visible sign of his fame, a stack of coaster-sized Parker Solar Probe stickers.

"A Mission to Touch the Sun," they say, the words atop an image of a spacecraft against a fiery orange inferno.

"Take one," Parker encouraged visitors late last week.

"I'm greatly honored that they would put my name on it," he said. "But I contributed nothing to the spacecraft. That's the hard work of a lot of other guys who never get much credit. They don't get interviews from the newspapers.'

But to be the first living honoree, following missions named for the likes of Kepler, Galileo, Hubble?

"I tend to shrug my shoulders at that," he said. "The fact that I'm living seems neither here nor there because I have not contributed in any way to the building of that spacecraft."

He is more focused on what the probe will learn on its seven-year mission as it loops repeatedly around Venus to propel it through the sun's atmosphere. Among the key questions being explored: How is the sun, contrary to any phenomenon on Earth, so many magnitudes hotter in its corona, the surrounding area visible in an eclipse (1.7 million degrees Fahrenheit and up), than at its surface (about 10,000 degrees), and how does it expel matter at supersonic speeds?

The sun, Parker said a couple of times, is a "very ordinary star." What we learn about it will tell us, in all likelihood, about much of the universe, although the craft's closest approach, at about 4 million miles and 2,500 degrees, won't come until 2024.

"Investigating the mechanisms of the heating are what I get most excited about," he said.

That sounds a lot like the Gene Parker she has come to know, said Fox, who will take part with the professor in a press event at the university's Gleacher Center downtown on Tuesday to draw attention to the scientist and the upcoming mission, now targeted to launch in the early morning hours of Aug. 11.

"It's like meeting Brad Pitt or somebody," she said. "He discovered the solar wind. He's kind of the father of heliophysics. ... He's this mythical person that did all this unbelievable science, and then you meet him, and he's just a lovely man."

In October Parker visited the Applied Physics Laboratory at Johns Hopkins University, where Fox is chief scientist for heliophysics and where the Parker Solar Probe was being loaded with an array of instruments that may solve some of the sun's enduring mysteries.

Again, she said, he was humble in the face of the engineering.

"I took him to meet the spacecraft that bears his name," she said.

Photographs of that event show Parker standing in the white suit required in a "clean room,' peering into the innards of the craft, and standing beside the exterior clad in the almost 5 inches of carbon that will keep it from incinerating as it flies past the sun.

Parker, she recalled, kept saying, "'You guys are the really clever ones. I just solved some equations. ... I just wrote a paper.'"

"I was like, 'Yeah, it's a pretty good paper, Gene.'"

"Dynamics of the Interplanetary Gas and Magnetic Fields" started on page 664 of volume 128 of the Astrophysical Journal, published in November, 1958.

"We consider the dynamical consequences of Biermann's suggestion that gas is often streaming outward in all directions from the sun with velocities on the order of 500-1500 km/sec," begins the paper's abstract.

They don't sound like the first words in a revolution, but those, and the words and calculations that followed, proved profound.

"People expected the space between earth and the sun to be basically a void," said Angela Olinto, a U. of C. astronomer and the university's dean of physical sciences. "Solar wind sort of connects up to the sun and all the other planets of the sun. Our local neighborhood is really quite different than the one we thought of in the 1950s."

"One of the reasons why Parker is so revered is because he was comfortable with a topic that most found arcane, difficult," said Geza Gyuk, director of astronomy at the Adler Planetarium.

The son of an engineer and grandson of a physicist, Parker, who grew up in the Buffalo and Detroit areas, was able to see the sun differently than those who had studied it before, he said, because he didn't approach it with a traditional astronomy background. Trained at Michigan State and CalTech, he was a physics guy so he tended to think in terms of systems, he said, where astronomers thought more about discrete objects.

A key to his work was the German scientist Ludwig Biermann's theory about why comet tails always point away from the sun, no matter the comet's direction of travel. Biermann suggested the sun must be emitting a stream of material, dubbed "solar corpuscular radiation," but did not explain the reason for the existence of such material.

And the British scientist Sydney Chapman had shown that the sun's corona extended beyond Earth, Parker said, but Chapman thought of the corona as a static thing.

When you add in Biermann's idea of motion, "you get an equation with one more term in it," Parker said. "And when you solve that, that makes all the difference in the world."

He looked at it as a problem similar to hydrodynamics - the flow of water - and found "thereís only one solution that fits," he said. "That's the supersonic solar winds starting slow and dense and accelerating as you go out" away from the sun.

"You put that into the mathematics, and the mathematics says, 'Well, there you are,' " he said.

Here is NASA's layperson's explanation of solar wind, from the detailed website for the Parker Solar Probe: "In the 1950s, Parker proposed a number of concepts about how stars - including our Sun - give off energy. He called this cascade of energy the solar wind, and he described an entire complex system of plasmas, magnetic fields, and energetic particles that make up this phenomenon."

But eminent astronomers in 1958 disagreed. Two of them were given the paper for peer review, and both rejected it. Their message was essentially that Parker couldn't be right because his work disagreed with conventional thinking.

"We recommend that the author go to the library and read up on the subject before he attempts to write papers about it," Parker recalled one of the scientist's critiques saying.

But there was no "real criticism," just a declaration and so Parker persisted: "I've had people say, 'Well, weren't you worried that if everybody disagreed, you might be wrong?' My reply is, 'I'm working with Newton. Newton got it right.'"

The journal's editor Subrahmanyan Chandrasekhar, a Chicago astronomer and future Nobel laureate in physics, examined the paper and told Parker he could find nothing wrong with it and he would publish it.

There was very little reaction, Parker said, but the 1962 Mariner 2 robotic voyage to Venus confirmed the solar wind's existence.

Parker continued on the faculty full time through 1995, had a major hand in guiding the university's astronomical research, colleagues said, and published important papers regularly on topics including the solar magnetic field and a theory on how the sun's corona is heated.

He won honors including the National Medal of Science, in 1989, and the Kyoto Prize for Lifetime Achievements in Basic Science, in 2003, but not the Nobel.

His theory on the lack of recognition from Sweden? "It wasn't exotic," he said of his solar wind work. "In a way I sort of feel, that just shows how much smarter you have to be to see it - because none of you guys thought of it. But anyway, I can't complain. I've gotten by all right."

Gyuk, of the Adler, thinks there may be a Nobel nomination in the offing "if his suggestions on heating mechanisms in the solar wind come to boot" as data comes in from the Parker Solar Probe.

But NASA naming the mission after him last year, no matter how much Parker might demur, represents a kind of crowning honor. It becomes doubly true when you consider how the mission will end: with the craft losing propellant and thus its ability to protect itself from the sun, vaporizing in the heat and joining the solar wind.

Related:
Department members: Angela V. Olinto, Eugene N. Parker

NASA Prepares to Launch Parker Solar Probe, a Mission to Touch the Sun
July 20, 2018
A Sun-skimming mission like Parker Solar Probe has been a dream of scientists for decades, but only recently has the needed technology - like the heat shield, solar array cooling system, and fault management system - been available to make such a mission a reality.
Credits: NASA/Johns Hopkins APL/Ed Whitman
Click on the image to enlarge
NASA, by Sarah Frazier
Early on an August morning, the sky near Cape Canaveral, Florida, will light up with the launch of Parker Solar Probe. No earlier than Aug. 6, 2018, a United Launch Alliance Delta IV Heavy will thunder to space carrying the car-sized spacecraft, which will study the Sun closer than any human-made object ever has.

On July 20, 2018, Nicky Fox, Parker Solar Probe's project scientist at the Johns Hopkins University Applied Physics Lab in Laurel, Maryland, and Alex Young, associate director for science in the Heliophysics Science Division at NASA's Goddard Space Flight Center in Greenbelt, Maryland, introduced Parker Solar Probe's science goals and the technology behind them at a televised press conference from NASA's Kennedy Space Center in Cape Canaveral, Florida.

"We've been studying the Sun for decades, and now we're finally going to go where the action is," said Young.

Our Sun is far more complex than meets the eye. Rather than the steady, unchanging disk it seems to human eyes, the Sun is a dynamic and magnetically active star. The Sun's atmosphere constantly sends magnetized material outward, enveloping our solar system far beyond the orbit of Pluto and influencing every world along the way. Coils of magnetic energy can burst out with light and particle radiation that travel through space and create temporary disruptions in our atmosphere, sometimes garbling radio and communications signals near Earth. The influence of solar activity on Earth and other worlds are collectively known as space weather, and the key to understanding its origins lies in understanding the Sun itself.

"The Sun's energy is always flowing past our world," said Fox. "And even though the solar wind is invisible, we can see it encircling the poles as the aurora, which are beautiful - but reveal the enormous amount of energy and particles that cascade into our atmosphere. We don't have a strong understanding of the mechanisms that drive that wind toward us, and that's what we're heading out to discover."

That's where Parker Solar Probe comes in. The spacecraft carries a lineup of instruments to study the Sun both remotely and in situ, or directly. Together, the data from these state-of-the-art instruments should help scientists answer three foundational questions about our star.

One of those questions is the mystery of the acceleration of the solar wind, the Sun's constant outflow of material. Though we largely grasp the solar wind's origins on the Sun, we know there is a point - as-yet unobserved - where the solar wind is accelerated to supersonic speeds. Data shows these changes happen in the corona, a region of the Sun's atmosphere that Parker Solar Probe will fly directly through, and scientists plan to use Parker Solar Probe's remote and in situ measurements to shed light on how this happens.

Second, scientists hope to learn the secret of the corona's enormously high temperatures. The visible surface of the Sun is about 10,000 F - but, for reasons we don't fully understand, the corona is hundreds of times hotter, spiking up to several million degrees F. This is counterintuitive, as the Sun's energy is produced at its core.

"It's a bit like if you walked away from a campfire and suddenly got much hotter," said Fox.

Finally, Parker Solar Probe's instruments should reveal the mechanisms at work behind the acceleration of solar energetic particles, which can reach speeds more than half as fast as the speed of light as they rocket away from the Sun. Such particles can interfere with satellite electronics, especially for satellites outside of Earth's magnetic field.

To answer these questions, Parker Solar Probe uses four suites of instruments.

The FIELDS suite, led by the University of California, Berkeley, measures the electric and magnetic fields around the spacecraft. FIELDS captures waves and turbulence in the inner heliosphere with high time resolution to understand the fields associated with waves, shocks and magnetic reconnection, a process by which magnetic field lines explosively realign.

The WISPR instrument, short for Wide-Field Imager for Parker Solar Probe, is the only imaging instrument aboard the spacecraft. WISPR takes images from of structures like coronal mass ejections, or CMEs, jets and other ejecta from the Sun to help link what's happening in the large-scale coronal structure to the detailed physical measurements being captured directly in the near-Sun environment. WISPR is led by the Naval Research Laboratory in Washington, D.C.

Another suite, called SWEAP (short for Solar Wind Electrons Alphas and Protons Investigation), uses two complementary instruments to gather data. The SWEAP suite of instruments counts the most abundant particles in the solar wind - electrons, protons and helium ions - and measures such properties as velocity, density, and temperature to improve our understanding of the solar wind and coronal plasma. SWEAP is led by the University of Michigan, the University of California, Berkeley, and the Smithsonian Astrophysical Observatory in Cambridge, Massachusetts.

Finally, the ISʘIS suite - short for Integrated Science Investigation of the Sun, and including ʘ, the symbol for the Sun, in its acronym - measures particles across a wide range of energies. By measuring electrons, protons and ions, ISʘIS will understand the particles' lifecycles - where they came from, how they became accelerated and how they move out from the Sun through interplanetary space. ISʘIS is led by Princeton University in New Jersey.

Parker Solar Probe is a mission some sixty years in the making. With the dawn of the Space Age, humanity was introduced to the full dimension of the Sun's powerful influence over the solar system. In 1958, physicist Eugene Parker published a groundbreaking scientific paper theorizing the existence of the solar wind. The mission is now named after him, and it's the first NASA mission to be named after a living person.

Only in the past few decades has technology come far enough to make Parker Solar Probe a reality. Key to the spacecraft's daring journey are three main breakthroughs: The cutting-edge heat shield, the solar array cooling system, and the advanced fault management system.

"The Thermal Protection System (the heat shield) is one of the spacecraft's mission-enabling technologies," said Andy Driesman, Parker Solar Probe project manager at the Johns Hopkins Applied Physics Lab. "It allows the spacecraft to operate at about room temperature."

Other critical innovations are the solar array cooling system and on-board fault management systems. The solar array cooling system allows the solar arrays to produce power under the intense thermal load from the Sun and the fault management system protects the spacecraft during the long periods of time when the spacecraft can't communicate with the Earth.

Using data from seven Sun sensors placed all around the edges of the shadow cast by the heat shield, Parker Solar Probe's fault management system protects the spacecraft during the long periods of time when it can't communicate with Earth. If it detects a problem, Parker Solar Probe will self-correct its course and pointing to ensure that its scientific instruments remain cool and functioning during the long periods when the spacecraft is out of contact with Earth.

Parker Solar Probe's heat shield - called the thermal protection system, or TPS - is a sandwich of carbon-carbon composite surrounding nearly four and half inches of carbon foam, which is about 97% air. Though it's nearly eight feet in diameter, the TPS adds only about 160 pounds to Parker Solar Probe's mass because of its lightweight materials.

Though the Delta IV Heavy is one of the world's most powerful rockets, Parker Solar Probe is relatively small, about the size of a small car. But what Parker Solar Probe needs is energy - getting to the Sun takes a lot of energy at launch to achieve its orbit around the Sun. That's because any object launched from Earth starts out traveling around the Sun at the same speed as Earth - about 18.5 miles per second - so an object has to travel incredibly quickly to counteract that momentum, change direction, and go near the Sun.

The timing of Parker Solar Probe's launch - between about 4 and 6 a.m. EDT, and within a period lasting about two weeks - was very precisely chosen to send Parker Solar Probe toward its first, vital target for achieving such an orbit: Venus.

"The launch energy to reach the Sun is 55 times that required to get to Mars, and two times that needed to get to Pluto," said Yanping Guo from the Johns Hopkins Applied Physics Laboratory, who designed the mission trajectory. "During summer, Earth and the other planets in our solar system are in the most favorable alignment to allow us to get close to the Sun."

The spacecraft will perform a gravity assist to shed some of its speed into Venus' well of orbital energy, drawing Parker Solar Probe into an orbit that - already, on its first pass - carries it closer to the solar surface than any spacecraft has ever gone, well within the corona. Parker Solar Probe will perform similar maneuvers six more times throughout its seven-year mission, assisting the spacecraft to final sequence of orbits that pass just over 3.8 million miles from the photosphere.

"By studying our star, we can learn not only more about the Sun,' said Thomas Zurbuchen, the associate administrator for the Science Mission Directorate at NASA HQ. "We can also learn more about all the other stars throughout the galaxy, the universe and even life's beginnings."

Parker Solar Probe is part of NASA's Living with a Star Program, or LWS, to explore aspects of the Sun-Earth system that directly affect life and society. LWS is managed by NASA's Goddard Space Flight Center in Greenbelt, Maryland, for the Heliophysics Division of NASA's Science Mission Directorate in Washington. Johns Hopkins APL manages the Parker Solar Probe mission for NASA. APL designed and built the spacecraft and will also operate it.

Related:
Department members: Eugene N. Parker

NASA's Webb Space Telescope to Inspect Atmospheres of Gas Giant Exoplanets
July 11, 2018
This is an artist's impression of the Jupiter-size extrasolar planet, HD 189733b, being eclipsed by its parent star. Astronomers using the Hubble Space Telescope have measured carbon dioxide and carbon monoxide in the planet's atmosphere. The planet is a "hot Jupiter," which is so close to its star that it completes an orbit in only 2.2 days. The planet is too hot for life as we know it. But under the right conditions, on a more Earth-like world, carbon dioxide can indicate the presence of extraterrestrial life. This observation demonstrates that chemical biotracers can be detected by space telescope observations.

Credits: ESA, NASA, M. Kornmesser (ESA/Hubble), and STScI
Click on the image to enlarge
NASA, by Christine Pulliam
In April 2018, NASA launched the Transiting Exoplanet Survey Satellite (TESS). Its main goal is to locate Earth-sized planets and larger "super-Earths" orbiting nearby stars for further study. One of the most powerful tools that will examine the atmospheres of some planets that TESS discovers will be NASA's James Webb Space Telescope. Since observing small exoplanets with thin atmospheres like Earth will be challenging for Webb, astronomers will target easier, gas giant exoplanets first.

Some of Webb's first observations of gas giant exoplanets will be conducted through the Director's Discretionary Early Release Science program. The transiting exoplanet project team at Webb's science operations center is planning to conduct three different types of observations that will provide both new scientific knowledge and a better understanding of the performance of Webb's science instruments.

"We have two main goals. The first is to get transiting exoplanet datasets from Webb to the astronomical community as soon as possible. The second is to do some great science so that astronomers and the public can see how powerful this observatory is," said Jacob Bean of the University of Chicago, a co-principal investigator on the transiting exoplanet project.

"Our team's goal is to provide critical knowledge and insights to the astronomical community that will help to catalyze exoplanet research and make the best use of Webb in the limited time we have available," added Natalie Batalha of NASA Ames Research Center, the project's principal investigator.

Transit - An atmospheric spectrum
When a planet crosses in front of, or transits, its host star, the star's light is filtered through the planet's atmosphere. Molecules within the atmosphere absorb certain wavelengths, or colors, of light. By splitting the star's light into a rainbow spectrum, astronomers can detect those sections of missing light and determine what molecules are in the planet's atmosphere.

For these observations, the project team selected WASP-79b, a Jupiter-sized planet located about 780 light-years from Earth. The team expects to detect and measure the abundances of water, carbon monoxide, and carbon dioxide in WASP-79b. Webb also might detect new molecules not yet seen in exoplanet atmospheres.

Phase curve - A weather map
Planets that orbit very close to their stars tend to become tidally locked. One side of the planet permanently faces the star while the other side faces away, just as one side of the Moon always faces the Earth. When the planet is in front of the star, we see its cooler backside. But as it orbits the star, more and more of the hot day-side comes into view. By observing an entire orbit, astronomers can observe those variations (called a phase curve) and use the data to map the planet's temperature, clouds, and chemistry as a function of longitude.

The team will observe a phase curve of the "hot Jupiter" known as WASP-43b, which orbits its star in less than 20 hours. By looking at different wavelengths of light, they can sample the atmosphere to different depths and obtain a more complete picture of its structure. "We have already seen dramatic and unexpected variations for this planet with Hubble and Spitzer. With Webb we will reveal these variations in significantly greater detail to understand the physical processes that are responsible," said Bean.

Eclipse - A planet's glow
The greatest challenge when observing an exoplanet is that the star's light is much brighter, swamping the faint light of the planet. To get around this problem, one method is to observe a transiting planet when it disappears behind the star, not when it crosses in front of the star. By comparing the two measurements, one taken when both star and planet are visible, and the other when only the star is in view, astronomers can calculate how much light is coming from the planet alone.

This technique works best for very hot planets that glow brightly in infrared light. The team plans to study WASP-18b, a planet that is baked to a temperature of almost 4,800 degrees Fahrenheit (2,900 K). Among other questions, they hope to determine whether the planet's stratosphere exists due to the presence of titanium oxide, vanadium oxide, or some other molecule.

Habitable planets
Ultimately, astronomers want to use Webb to study potentially habitable planets. In particular, Webb will target planets orbiting red dwarf stars since those stars are smaller and dimmer, making it easier to tease out the signal from an orbiting planet. Red dwarfs are also the most common stars in our galaxy.

"TESS should locate more than a dozen planets orbiting in the habitable zones of red dwarfs, a few of which might actually be habitable. We want to learn whether those planets have atmospheres and Webb will be the one to tell us," said Kevin Stevenson of the Space Telescope Science Institute, a co-principal investigator on the project. "The results will go a long way towards answering the question of whether conditions favorable to life are common in our galaxy."

The James Webb Space Telescope will be the world's premier space science observatory. Webb will solve mysteries of our solar system, look beyond to distant worlds around other stars, and probe the mysterious structures and origins of our universe and our place in it. Webb is an international project led by NASA with its partners, the European Space Agency (ESA) and the Canadian Space Agency (CSA).

Related:
Department members: Jacob L. Bean

Doyal "Al" Harper has received a Norman Maclean Faculty Award
June 7, 2018
Prof. Doyal "Al" Harper
UChicago News, by Ryan Goodwin
The Norman Maclean Faculty Award recognizes emeritus or senior faculty for extraordinary contributions to teaching and to the student experience of life within the University community. This year's recipient is Doyal "Al" Harper, professor in the Department of Astronomy and Astrophysics and the College.

Prof. Doyal "Al" Harper has mentored and supported countless students in the Department of Astronomy and Astrophysics and in the College and has been an enthusiastic research adviser to both undergraduate and graduate students at UChicago. Students have benefited in particular from the wide range of research opportunities he provides--they are able to do hands-on work in the laboratory, design and build instrumentation, carry out observational programs at ground-based and airborne observatories, and develop and employ computational tools for data analysis.

Harper's research addresses problems in the formation of galaxies, stars and planetary systems; the physics of the interstellar medium; and the properties of interstellar dust. His experimental research group constructs and operates infrared instrumentation and pioneered airborne infrared astronomy and astrophysical observations from the South Pole.

Related:
Department members: Doyal ''Al'' Harper

Angela Olinto named dean of Physical Sciences Division
June 7, 2018
Prof. Angela Olinto
Click on the image to enlarge
UChicago News
Angela V. Olinto, the Albert A. Michelson Distinguished Service Professor in the Department of Astronomy and Astrophysics, has been appointed dean of the Division of the Physical Sciences at the University of Chicago.

Olinto is a leading scholar in astroparticle physics and cosmology, focusing on understanding the origin of high-energy cosmic rays, gamma rays and neutrinos. Her appointment as dean is effective July 1.

"Angela brings depth of University experience and scholarly expertise to this leadership role, making her an excellent choice as dean," wrote President Robert J. Zimmer and Provost Daniel Diermeier in announcing her appointment.

Olinto's research includes important contributions to the physics of quark stars, inflationary theory and cosmic magnetic fields. She currently leads NASA sub-orbital and space missions to discover the origins of high-energy cosmic rays and neutrinos. This includes a NASA-funded balloon mission planned for 2022 that will use an ultra-sensitive telescope to detect cosmic rays and neutrinos coming from deep space.

"I am thrilled and humbled to be appointed to lead this historic and dynamic division, home to visionary scholars who constantly redefine the boundaries of the physical and mathematical sciences. I look forward to collaborating with faculty, students and staff to advance the important work of the division," Olinto said.

Olinto joined the UChicago faculty in 1996 and served as chair of the Department of Astronomy and Astrophysics from 2003 to 2006 and from 2012 to 2017. She is the leader of the POEMMA and EUSO space missions and a member of the Pierre Auger Observatory, which are international projects designed to discover the origin of high-energy cosmic rays. She is a fellow of the American Physical Society, was a trustee of the Aspen Center for Physics, and serves on advisory committees for the National Academy of Sciences, U.S. Department of Energy, the National Science Foundation and NASA.

Olinto's awards and honors include the Chaire d'Excellence Award of the French Agence Nationale de la Recherche in 2006, the University's Llewellyn John and Harriet Manchester Quantrell Award for Excellence in Undergraduate Teaching in 2011, and the Faculty Award for Excellence in Graduate Teaching and Mentoring in 2015. Olinto received her undergraduate degree from Pontificia Universidade Catolica in Rio de Janeiro, Brazil and her doctoral degree from the Massachusetts Institute of Technology.

Olinto succeeds Edward "Rocky" Kolb, the Arthur Holly Compton Distinguished Service Professor of Astronomy & Astrophysics, whose work over the last five years enhanced the division's historic strengths as a leading center of scientific discovery. Kolb will return to his full-time work on the faculty next month.

The selection of the new dean by Zimmer and Diermeier was informed by the recommendations of an elected faculty committee chaired by Stuart A. Kurtz, professor in the Department of Computer Science.

Related:
Department members: Edward ''Rocky'' W. Kolb, Angela V. Olinto
Scientific projects: Extreme Universe Space Observatory at the Japanese Module, Extreme Universe Space Observatory on a Super Pressure Balloon, Pierre Auger Observatory

NASA Spacecraft Discovers New Magnetic Process in Turbulent Space
May 24, 2018
Click on the image to enlarge
NASA
In a new discovery reported in the journal Nature, scientists working with NASA's Magnetospheric Multiscale spacecraft -- MMS -- have uncovered a new type of magnetic event in our near-Earth environment by using an innovative technique to squeeze extra information out of the data. Astronomy & Astrophysics postdoctoral scholar Colby Haggerty was part of the team of scientists who made this exciting discovery.

Related:
Department members: Colby Haggerty