Improving Galaxy Cluster Cosmology with Spectroscopic Followup of DES

Sarah M. Hansen
NSF Fellow
UC Santa Cruz / UCO Lick

with significant input from
Brian Gerke, Heidi Wu, Risa Wechsler,
& Eduardo Rozo

Cluster Abundance & Cosmology

$$\frac{dN}{dzd\Omega} = \frac{d^2V}{dzd\Omega} \ n(z) = \frac{c}{H(z)} \ D_A^2(1+z)^2 \int_0^\infty f(M,z) \frac{dn(z)}{dM} \ dM$$

Cluster Abundance & Cosmology

Cluster Abundance & Cosmology

$$\frac{dN}{dzd\Omega} = \frac{d^2V}{dzd\Omega} \ n(z) = \frac{c}{H(z)} \ D_A^2(1+z)^2 \int_{\text{clusters}}^{\infty} f(M,z) \frac{dn(z)}{dM} \ dM$$
find
clusters
estimate mass

Intrinsic Uncertainty in the Mass-Richness Relationship

Location/Richness Optimization

For cluster finding, richness optimization & photometric redshift calibration: need the (evolving) color distribution of cluster members as a function of redshift

Spectra are essential for determining membership probability model

How Many Spectra Are Needed?

intrinsic massrichness scatter

Small-number statistics dominate the error budget unless have at minimum ~10 velocities per cluster

Quality of Velocity Dispersion Mass Proxy Depends on M,z

Impact of Depth & Area on FoM

Since it isn't
necessary to get
much beyond ~10
spectra/cluster,
getting more area
is more important
than depth in the
fixed-depth case.

What Spectral Resolution?

For FoM improvement, no strong need to do better than ~100 km/s

Three Scenarios Considered

The DES Science Committee requested consideration of the following spectroscopic followup programs:

- Scenario 1: 100% completeness to r=21 with 80 km/s redshift accuracy
- Scenario 2: 100% completeness to r=21 + 50% completeness to r=22.5 with 80 km/s redshift accuracy
- Scenario 3: 100% completeness to r=22 with 300 km/s redshift accuracy

Figure of Merit Improvement

FOM_{fiducial}
from
DES clusters
with
self-calibration

- Scenario 1: 100% completeness to r=21 with 80 km/s redshift accuracy
- Scenario 2: 100% completeness to r=21 + 50% completeness to r=22.5
 with 80 km/s redshift accuracy
- Scenario 3: 100% completeness to r=22 with 300 km/s redshift accuracy

HOWEVER

Impact of Intrinsic Scatter on FoM

FoM improvement degrades if the massrichness scatter is larger: need a robust optical mass proxy over wide range of mass and redshift

Lots of Targets!

FoM improvement ———— Required # Velocities

fiber density is a serious issue for cluster work

FoM Improvement: Fixed N

Time-Optimized: Fixed Luminosity

HOWEVER

Needs Consideration

- Target/fiber density
- Realistic completeness, including as f(z)
- Scatter, velocity bias as f(z)
- Have not yet incorporated WL or SZ calibration (only self-calibration). With those, the $FoM_{fiducial}$ may be higher, and thus the $FoM_{spec}/FoM_{fiducial}$ weaker.
- Need to consider optimizing for fixed telescope time, with some realistic assumptions.
- How many spectra do we need to calibrate richness & cluster photo-zs?
- Other cluster galaxy science has different demands

Summary

Spectroscopic followup has the potential to strengthen cluster cosmology in three complementary ways:

Now essential to consider some practicalities!