CMB: Sound Waves in the Early Universe

Before recombination:

- Universe is ionized.
- Photons provide enormous pressure and restoring force.
- Photon-baryon perturbations
 Phase of oscillation at t_{rec} oscillate as acoustic waves.

After recombination:

- Universe is neutral.
- Photons can travel freely past the baryons.
- affects late-time amplitude.

The cartoon

- At early times the universe was hot, dense and ionized. Photons and matter were tightly coupled by Thomson scattering.
 - Short m.f.p. allows fluid approximation.
- Initial fluctuations in density and gravitational potential drive acoustic waves in the fluid: compressions and rarefactions.

$$\frac{d}{d\tau} \left[m_{\text{eff}} \frac{d\delta_b}{d\tau} \right] + \frac{k^2}{3} \delta_b = F[\Psi] \qquad m_{\text{eff}} = 1 + 3\rho_b/4\rho_\gamma$$

 These show up as temperature fluctuations in the CMB

$$\Delta T \sim \delta \rho_{\gamma}^{1/4} \sim A(k) \cos(kc_s t)$$
 [harmonic wave]

Acoustic Oscillations in the CMB

Temperature map of the cosmic microwave background radiation

WMAP

Although there are fluctuations on all scales, there is a characteristic angular scale, ~ 1 degree on the sky, set by the distance sound waves in the photon-baryon fluid can travel just before recombination: sound horizon $\sim c_s t_{ls}$

Acoustic oscillations seen!

Acoustic scale is set by the *sound horizon* at last scattering: $s = c_s t_{ls}$

Sound Waves

- Each initial overdensity (in dark matter & gas) is an overpressure that launches a spherical sound wave.
- This wave travels outwards at 57% of the speed of light.
- Pressure-providing photons decouple at recombination.CMB travels to us from these spheres.

Sound horizon more carefully

$$s = \int_0^{t_{\text{rec}}} c_s (1+z)dt = \int_{z_{\text{rec}}}^{\infty} \frac{c_s dz}{H(z)}$$

· Depends on

Standard ruler

- Epoch of recombination
- Expansion of universe
- Baryon-to-photon ratio (through c_s)

$$c_s = [3(1+3\rho_b/4\rho_\gamma)]^{-1/2}$$

Photon density is known exquisitely well from CMB spectrum.

CMB Angular Diameter Distance

 Temperature (and polarization) patterns shift in and out in angular scale with the angular

diameter distance to recom-

bination

fixed plasma conditions

baryon-photon ratio: $\Omega_b h^2$

matter-radiation ratio: $\Omega_{\rm m}h^2$

(expansion rate)

fixed recombination

Angular scale subtended by s

Hu

Seeing the Sound Horizon

CMB Maps

Microwave Background Anisotropy Probes Spatial Curvature

Boomerang (2001) Netterfield et al

DASI (2001) Pryke et al

Data indicates nearly flat geometry if w = -1

CMB Results

WMAP3 Results

Degeneracy of the Peak Locations

• But raising the equation of state $w=p/\rho$ has the same effect as changing Ω_{DE}

Degeneracy of the Peak Locations

• Contours of angular diameter distance H_0D_A at constant $\Omega_b h^2$, $\Omega_m h^2$ (peak locations and morphology)

CMB shift parameter

CMB anisotropy constraint on Angular Diameter distance to lastscattering well approximated by:

$$R = \left(\Omega_m H_0^2\right)^{1/2} \int_0^{z_{LS}} \frac{dz}{H(z)} = 1.715 \pm 0.021$$

$$z_{LS} = 1089$$

WMAP5 results Komatsu etal 2008

MICIS

SDSS only:

Nearby+SDSS:

MLCS

$$w = -0.93 \pm 0.13(\text{stat})^{+0.10}_{-0.32}(\text{syst})$$

SALT

 $w = -0.92 \pm 0.11(\text{stat})_{-0.15}^{+0.07}(\text{syst})$

Standard rulers

- Suppose we had an object whose length (in meters)
 we knew as a function of cosmic epoch.
- By measuring the angle (Δθ) subtended by this ruler (Δχ) as a function of redshift we map out the angular diameter distance d_A

$$\Delta\theta = \frac{\Delta\chi}{d_A(z)}$$
 $d_A(z) = \frac{d_L(z)}{(1+z)^2} \propto \int_0^z \frac{dz'}{H(z')}$

 By measuring the redshift interval (Δz) associated with this distance we map out the Hubble parameter H(z)

$$c\Delta z = H(z) \ \Delta \chi$$

Sound horizon more carefully

$$s = \int_0^{t_{\text{rec}}} c_s (1+z)dt = \int_{z_{\text{rec}}}^{\infty} \frac{c_s dz}{H(z)}$$

$$s = rac{1}{H_0 \, \Omega_m^{1/2}} \int_0^{a_r} rac{c_s}{(a + a_{
m eq})^{1/2}} \, da$$

CMB calibration

 Not coincidentally the sound horizon is extremely well determined by the structure of the acoustic peaks in the CMB.

$$s = 147.8 \pm 2.6 \; \mathrm{Mpc}$$
 WMAP 3rd yr data
= $(4.56 \pm 0.08) \times 10^{24} \mathrm{m}$

Dominated by uncertainty in ρ_m from poor constraints near 3^{rd} peak in CMB spectrum. (Planck will nail this!)

The Structure Formation Cookbook

- 1. Initial Conditions: A Theory for the Origin of Density

 Perturbations in the Early Universe $P_m(k) \sim k^n$, $n \sim 1$ Primordial Inflation: initial spectrum of density perturbations
- 2. Cooking with Gravity: Growing Perturbations to Form Structure Set the Oven to Cold (or Hot or Warm) Dark Matter Season with a few Baryons and add Dark Energy $P_m(k) \sim T(k)k^n$
- 3. Let Cool for 13 Billion years
 Turn Gas into Stars

$$P_g(k) \sim b^2(k) T(k) k^n$$

4. Tweak (1) and (2) until it tastes like the observed Universe.

Cold Dark Matter Models

Power Spectrum of the Mass Density

Primordial

$$\delta(k) = \int d^3x \cdot e^{i\vec{k}\cdot\vec{x}} \frac{\delta\rho(x)}{\rho}$$

$$\langle \delta(k_1)\delta(k_2)\rangle =$$

 $(2\pi)^3 P(k_1)\delta^3(\vec{k}_1 + \vec{k}_2)$

Cold Dark Matter Models

Theoretical
Power Spectrum
of the Mass Density

$$\delta(k) = \int d^3x \cdot e^{i\vec{k}\cdot\vec{x}} \frac{\delta\rho(x)}{\rho}$$

$$\langle \delta(k_1)\delta(k_2)\rangle =$$

$$(2\pi)^3 P(k_1)\delta^3(\vec{k}_1 + \vec{k}_2)$$

Power spectrum measurements probe cosmological parameters

Fig. 3.— Predicted uncertainties in the power spectrum estimated from a volume-limited $(R_{max} = 500h^{-1} \text{ Mpc})$ sample of SDSS North and for the Bright Red Galaxy sample (upper set of error bars). These errors assume that the true power spectrum is that of an $\Omega h = 0.25$ CDM model and that the BRGs are more clustered than normal galaxies. Plotted for comparison to the SDSS North errors are CDM power spectra (normalized to $\sigma_0 = 1$) for a

Sound Waves again

- Each initial overdensity (in dark matter & gas) is an overpressure that launches a spherical sound wave.
- This wave travels outwards at 57% of the speed of light.
- Pressure-providing photons decouple at recombination. CMB travels to us from these spheres.
- Sound speed plummets. Wave stalls at a radius of 150 Mpc.
- Overdensity in shell (gas) and in the original center (DM) both seed the formation of galaxies. Preferred separation of 150 Mpc.

A Statistical Signal

- The Universe is a superposition of these shells.
- The shell is weaker than displayed.
- Hence, you do not expect to see bulls' eyes in the galaxy distribution.
- Instead, we get a 1% bump in the correlation function.

Origin of Baryon Acoustic Oscillations (BAO)

$$\dot{ec{v}}_{\mathrm{b}} + rac{\dot{a}}{a} ec{v}_{\mathrm{b}} + ec{
abla} \Psi = \mathcal{C}$$

$$C = \frac{1}{\rho_{\rm b}} \int \frac{d^3p}{(2\pi)^3} (-\vec{p}) C[f_{\gamma}(\vec{p})]$$

Collision Term

$$C[f_{\gamma}(\vec{p})] = -p \frac{\partial f_{\gamma}^{(0)}}{\partial p} (n_{e}\sigma_{T}) (\Theta_{0} - \Theta(\hat{p}) + \hat{p} \cdot \vec{v}_{b})$$

$$f_{\gamma}(\vec{p}) = \left[\exp\left\{ \frac{p}{T(1+\Theta)} \right\} - 1 \right]^{-1} \simeq f_{\gamma}^{(0)} - p \frac{\partial f_{\gamma}^{(0)}}{\partial p} \Theta$$

Baryon oscillations in P(k)

- Since the baryons contribute ~15% of the total matter density, the total gravitational potential is affected by the acoustic oscillations with scale set by s. sound horizon scale
- This leads to small oscillations in the matter power spectrum P(k).
 - No longer order unity, like in the CMB, now suppressed by $\Omega_{\rm b}/\Omega_{\rm m}$ ~ 0.1

Baryon (acoustic) oscillations

Divide out the gross trend ...

A damped, almost harmonic sequence of "wiggles" in the power spectrum of the mass perturbations of amplitude O(10%).

Simulation

The error due to sample variance on a power spectrum measurement, averaged over a radial bin in k-space of width Δk , is

$$\left(\frac{\sigma_P}{P}\right)^2 = 2 \times \frac{(2\pi)^3}{V} \times \frac{1}{4\pi k^2 \Delta k} \tag{2}$$

plus Poisson errors: multiply by (1+1/nP)²

Assumes Gaussian errors (linear theory)

Fit with:

$$rac{P(k)}{P_{
m ref}} = 1 + A \, k \, \exp \left[- \left(rac{k}{0.1 \, h \, {
m Mpc}^{-1}}
ight)^{1.4}
ight] \, \sin \left(rac{2\pi k}{k_A}
ight)$$

Power Spectrum

Correlation Function

Measure redshifts and angular positions

Convert to comoving separation using redshift-distance relation

$$\frac{dx}{dz} = \frac{c}{H_0 \Omega_m^{1/2}} \frac{1}{\sqrt{(1+z)^3 + (\Omega_m^{-1} - 1)(1+z)^{3(1+w)}}}$$

Dependence on w

Fig. 5.— The length distortion of a rod as a function of redshift, supposing the true cosmology is $\Omega_m = 0.3$, $w_{true} = -1$ and the assumed cosmology is $\Omega'_m = 0.3$, $w_{ass} = -0.9$. The dashed and

Fig. 6.— Power spectrum measurement for a simulated survey with the same parameters as Figure 2, except that the value w = -0.8 has been incorrectly assumed. The wavescale of the fitted function (the dashed line) is spuriously distorted

SDSS
Galaxy
Distribution

Luminous Red Galaxies

Large-scale Correlations of SDSS Luminous Red Galaxies

Redshiftspace Correlation Function

$$\xi(r) = \langle \delta(\vec{x})\delta(\vec{x} + \vec{r}) \rangle$$

Warning: Correlated Error Bars

Baryon
Acoustic
Oscillations
seen in
Large-scale
Structure

Eisenstein, etal

Model Comparison

Fixed $\Omega_b h^2 = 0.024$ $n_s = 0.98$, flat

Constraints

Galaxy pair with separations Δz , $\Delta \theta$:

 $\Delta r_c = c\Delta z/H(z)$ radial comoving separation

 $\Delta r_c = \Delta \theta (1+z) d_A$ angular comoving separation

Spherically averaged correlation function probes

$$D_V(z) = \left[(1+z)^2 d_A^2(z) \frac{cz}{H(z)} \right]^{1/3}$$

SDSS:
$$D_V(z = 0.35) = 1370 \pm 64$$
 Mpc

$$R_{0.35} = D_V(0.35)/d_A(z_{LS}) = 0.0979 \pm 0.0036$$

$$A = D_V(0.35) \frac{\sqrt{\Omega_m H_0^2}}{0.35c} = 0.469 \pm 0.017$$

Eisenstein etal 2005

MICIS

SDSS only:

Nearby+SDSS:

MLCS

$$w = -0.93 \pm 0.13(\text{stat})^{+0.10}_{-0.32}(\text{syst})$$

SALT

 $w = -0.92 \pm 0.11(\text{stat})_{-0.15}^{+0.07}(\text{syst})$

BAO from SDSS + 2dFGRS

BAO detected at low redshift 0<z<0.3 (effective redshift 0.2) SDSS main + 2dFGRS

BAO detected at high redshift 0.15<z<0.5 (effective redshift 0.35) SDSS LRGs

BAO from combined sample (detected over the whole redshift range 0<z<0.5)

$$\frac{D_V(z=0.35)}{D_V(z=0.2)} = 1.812 \pm 0.060$$

Cosmological constraints: BAO

Consider two simple models:

- 1. ACDM
- 2. Flat, constant w

Constraint fitting s/D_V with model for s

Constraint including distance to CMB $d_A(z_{LS})/D_V$

Galaxy Clustering varies with Galaxy Type

How are each of them related to the underlying Dark Matter distribution?

BIAS

Caveat for inference of Cosmological Parameters from LSS

Galaxy Clustering as a function of Galaxy Luminosity

Zehavi, etal
Based on sample of ~200,000 galaxies

Systematic Issues for BAO

Effects of non-linearities on BAO signal

Modeling redshift distortions precisely

Effects of (non-linear) galaxy bias

Halos vs. Dark Matter

Real Space

Redshift Space

III. Baryon Acoustic Oscillations

DARK ENERGY SURVEY

Galaxy Angular
Correlation Function
in Photo-z bins

Systematics:

photo-z's, correlated photometric errors, non-linearity, scaledependent bias

Fosalba & Gaztanaga

III. Baryon Acoustic Oscillations

DARK ENERGY SURVEY

DES Science Program

Four Probes of Dark Energy

Galaxy Clusters

- \sim 100,000 clusters to z>1
- ~10,000 with SZE measurements from SPT
- Sensitive to growth of structure and geometry

Weak Lensing

- Shape measurements of 300 million galaxies
- Sensitive to growth of structure and geometry

Baryon Acoustic Oscillations

- 300 million galaxies to z = 1 and beyond
- Sensitive to geometry

Supernovae

- 15 sq deg time-domain survey
- \sim 3000 well-sampled SNe Ia to z \sim 1
- Sensitive to geometry

Forecast Constraints on DE Equation of State

Photometric Redshifts

DARK ENERGY SURVEY

- Measure relative flux in multiple filters: track the 4000 A break
- Estimate individual galaxy redshifts with accuracy σ(z) < 0.1 (~0.02 for clusters)
- Precision is sufficient for Dark Energy probes, provided error distributions well measured.

Galaxy Photo-z Simulations

DARK ENERGY SURVEY

DES+VHS*

10σ Limiting Magnitudes

g 24.6 r 24.1 J 20.3 i 24.0 H 19.4 Z 23.8 Ks 18.3 Y 21.6

+2% photometric calibration error added in quadrature

Photo-z systematic errors under control using *existing* spectroscopic training sets to DES photometric depth: low-risk

+Developed improved Photo-z & Error Estimates and robust methods of outlier rejection Oyaizu, Cunha, Lima, Frieman, Lin