## The Structure Formation Cookbook

1. Initial Conditions: A Theory for the Origin of Density<br/>Perturbations in the Early Universe $P_m(k) \sim k^n$ ,  $n \sim 1$ <br/>Primordial Inflation: initial spectrum of density perturbations

2. Cooking with Gravity: Growing Perturbations to Form Structure Set the Oven to Cold (or Hot or Warm) Dark Matter Season with a few Baryons and add Dark Energy  $P_m(k) \sim T(k)k^n$ 

3. Let Cool for 13 Billion years Turn Gas into Stars

 $P_{g}(k) \sim b^{2}(k) T(k) k^{n}$ 

### Growth of Density Perturbations

### Volume Element



Raising *w* at fixed  $\Omega_{DE}$ : decreases growth rate of density perturbations and decreases volume surveyed

## **Clusters and Dark Energy**

### •Requirements

- 1.Understand formation of dark matter halos
- 2.Cleanly select massive dark matter halos (galaxy clusters) over a range of redshifts
- 3.Redshift estimates for each cluster4.Observable proxy that can be used as cluster mass estimate:

g(O|M,z)

#### Primary systematic:

$$\frac{d^2 N(z)}{dz d\Omega} = -$$

$$= \frac{c}{H(z)}D_A^2(1+$$

Number of clusters above observable mass threshold



(geometry)

## Halos form hierarchically



Kravtsov

5 Mpc

### Theoretical Abundance of Dark Matter Halos



Warren etal

### Halo Mass Function



Tinker, Kravtsov et al. 2008, ApJ 688, 709

$$\sigma(M, z) = \sigma(M, z = 0)D(z)$$

# **Clusters of Galaxies**



- Clusters of galaxies are the largest gravitationally virialized objects in the Universe: M~10<sup>13</sup>-10<sup>15</sup> M<sub>sun</sub>
- ~50-90% of their baryonic mass is in the form of intracluster gas
- The gas is heated as it collapses into the cluster's gravitational potential well to temperatures of  $T_{gas} \sim 10^7$ -10<sup>8</sup> K
- The hot intracluster gas emits X-rays and causes the Sunyaev-Zel'dovich (SZ) effect
- Clusters serve as approximate proxies for massive dark matter halos

## **Clusters and Dark Energy**

#### Number of clusters above observable mass threshold

### •Requirements

- 1.Understand formation of dark matter halos
- 2.Cleanly select massive dark matter halos (galaxy clusters) over a range of redshifts
- 3.Redshift estimates for each cluster 4.Observable proxy that can be used as cluster mass estimate:

g(O|M,z)

#### Primary systematic:

Uncertainty in bias & scatter of mass-observable relation



## **Cluster Selection**

- 4 Techniques for Cluster Selection:
  - Optical galaxy concentration
  - Weak Lensing
  - Sunyaev-Zel'dovich effect (SZE)
  - X-ray
  - Cross-compare selection to control systematic errors



MS 0451-03: S-Z Effect Contours, Chandra ACIS Color Scale





Holder



# **Cluster Scaling Relations**

Relations between observable integrated properties of intracluster gas and cluster mass are expected and observed to be tight, but the amplitude and slope are affected by galaxy formation physics



# **Cluster SZ Studies**

- Examine clusters at high angular resolution
- Compare many probes to calibrate SZ signal



## **Clusters and Dark Energy**

#### Number of clusters above observable mass threshold

### •Requirements

1.Understand formation of dark matter halos

2.Cleanly select massive dark matter halos (galaxy clusters) over a range of redshifts

3.Redshift estimates for each cluster

4.Observable proxy that can be used as cluster mass estimate:

p(O|M,z)

#### Primary systematic:

Uncertainty in bias & scatter of mass-observable relation





## **Photometric Redshifts**

- Measure relative flux in multiple filters: track the 4000 A break
- Precision is sufficient for Dark Energy probes, provided error distributions well measured.

Redshifted Elliptical galaxy spectrum



### **VISTA Hemisphere Survey**



#### 120 sec JHK exposures

VHS limiting magnitudes<br/>[AB system; 5σ]deg²YJHKVHS-DES500021.921.220.820.2



VISTA 4.1 m primary mirror 1.5 deg field of view 16 2kx2k HgCdTe

### VHS

380 nights over 5 yrs 120 sec JHK exposures Richard McMahon, Pl

DES collaborates with VHS: DES acquires Y imaging, VHS shares JHK data



## **Galaxy Photo-z Simulations**

DARK ENERGY SURVEY

### DES+VHS\*

 $10\sigma$  Limiting Magnitudes

| g | 24.6 |         |
|---|------|---------|
| r | 24.1 | J 20.3  |
| i | 24.0 | H 19.4  |
| Ζ | 23.8 | Ks 18.3 |
| Y | 21.6 |         |

+2% photometric calibration error added in quadrature



## **Clusters and Dark Energy**

#### Number of clusters above observable mass threshold

### •Requirements

- 1.Understand formation of dark matter halos
- 2.Cleanly select massive dark matter halos (galaxy clusters) over a range of redshifts
- 3.Redshift estimates for each cluster 4.Observable proxy that can be used as cluster mass estimate:

p(O|M,z)

#### Primary systematic:

Uncertainty in bias & scatter of mass-observable relation



### Precision Cosmology with Clusters?

Sensitivity to Mass Threshold

Effect of Uncertainty in mass-observable relation



### **Cluster Mass Estimates**

4 Techniques for Cluster Mass Estimation:

- Optical galaxy concentration
- Weak Lensing
- Sunyaev-Zel'dovich effect (SZE)
- X-ray
- Cross-compare these techniques to reduce systematic errors
- Additional cross-checks: shape of mass function; cluster correlations (Lima & Hu)



MS 0451-03: S-Z Effect Contours, Chandra ACIS Color Scale





## Joint Self-Calibration

- Both counts and their variance as a function of binned observable
- Many observables allows for a joint solution of a mass independent bias and scatter with cosmology



# **Cluster Clustering**



Clustering amplitude constrains cluster mass

# Current Constraints from X-ray Clusters



Vikhlinin etal

## **Current Constraints: X-ray clusters**



Mantz, et al 2007

Vikhlinin, et al 2008

### Gravitational Lensing

See the same effects that occur in more familiar optical circumstances: magnification and distortion (shear)



Lensing conserves surface brightness: bigger image  $\leftarrow \rightarrow$  magnified

# Gravitational Lensing by Clusters



Galaxy Cluster Abell 2218 NASA, A. Fruchter and the ERO Team (STScl) • STScl-PRC00-08 HST • WFPC2

Strong Lensing

# Deep images: WL reconstrution of Cluster Mass Profile











### Statistical Weak Lensing by Galaxy Clusters

Mean Tangential Shear Profile in Optical Richness (N<sub>gal</sub>) Bins to 30 h<sup>-1</sup>Mpc

Sheldon, Johnston, etal SDSS



31

### Statistical Weak Lensing by Galaxy Clusters

Mean Tangential Shear Profile in Optical Richness (N<sub>gal</sub>) Bins to 30 h<sup>-1</sup>Mpc

Johnston, Sheldon, etal SDSS



Mean 3D Cluster Mass Profile

from Statistical Lensing

Johnston, etal



### Statistical Weak Lensing Calibrates Cluster Mass vs. Observable Relation

Cluster Mass vs. Number of galaxies they contain

Future: use this to independently calibrate, e.g., SZE vs. Mass



Statistical Lensing eliminates projection effects of individual cluster mass Estimates

~50% scatter in mass vs optical richness