Science of the Dark Energy Survey

Josh Frieman

Fermilab and the University of Chicago

Astronomy 41100 Lecture 3, Oct. 29, 2010

1998-2010 SN Ia Synopsis

- Substantial increases in both quantity and quality of SN Ia data: from several tens of relatively poorly sampled light curves to many hundreds of well-sampled, multiband light curves from rolling surveys
- Extension to previously unexplored redshift ranges: z>1 and 0.1<z<0.3
- Extension to previously underexplored rest-frame wavelengths (Near-infrared)
- Vast increase in spectroscopic data
- Identification of SN Ia subpopulations (host galaxies)
- Entered the systematic error-dominated regime, but with pathways to reduce systematic errors

Supernova Legacy Survey (2003-2008)

- Observed 2 1-sq deg regions every 4 nights
- ~400+ spectroscopically confirmed SNe Ia to measure w
- Used 3.6-meter CFHT/"Megacam"
- 36 CCDs with good blue response
- 4 filters griz for good K-corrections and color measurement
- Spectroscopic follow-up on 8-10m telescopes

120 hr/yr: France/UK FORS 1&2 for types, redshifts Magellan

3 nights/yr: Toronto IMACS for host redshifts

Gemini

Spectra

Redshifts

SN Identification

8 nights/yr: LBL/Caltech DEIMOS/LRIS for types, intensive study, cosmology with SNe II-P

Keck

120 hr/yr: Canada/US/ UK GMOS for types, redshifts

Power of a Rolling Search

SNLS Light curves

SNLS 1st Year Results

The ESSENCE Survey

Determine w to 10% or w!=-1

- 6-year project on CTIO 4m telescope in Chile; 12 sq. deg.
- ✤ Wide-field images in 2 bands
- Same-night detection of SNe
- Spectroscopy
 - 🔹 Keck, VLT, Gemini, Magellan
- ✤ Goal is 200 SNeIa, 0.2<z<0.8</p>

Wood-Vasey, etal (2007), Miknaitis, etal (2007): results from ~60 ESSENCE SNe (+Low-z)

Higher-z SNe Ia from ACS

Z=1.39	Z=0.46	Z=0.52	Z=1.23	Z=1.03
HST04Sas	HST04Yow	HST04Zwi	HST05Lan	HST05Str

Host Galaxies of Distant Supernovae Hubble Space Telescope • Advanced Camera for Surveys

50 SNe Ia, 25 at z>1

Riess, etal

$$-2\ln P_{posterior} = \sum_{i} \frac{(\mu_{i} - \mu_{mod}(z_{i}; w, \Omega_{m}, \Omega_{DE})^{2})}{\sigma_{\mu, i}^{2}} + \chi_{BAO}^{2} + \chi_{CMB}^{2}$$

where latter terms incorporate BAO and CMB priors:

BAO (SDSS LRG, Eisenstein etal 05):

$$A(z_1; w, \Omega_m, \Omega_{DE}) = \frac{\sqrt{\Omega_m}}{E(z_1)^{1/3}} \left[\frac{1}{z_1 \sqrt{|\Omega_k|}} S_k \left(\left| \Omega_k \right|^{1/2} \int_0^{z_1} \frac{dz}{E(z)} \right) \right]^{2/3}$$

with

 $\chi_{BAO}^{2} = [(A(z_1; w, \Omega_m, \Omega_{DE}) - 0.469)/0.017]^2 \text{ for } z_1 = 0.35$

CMB (WMAP5, Komatsu etal 08):

$$R(z_{CMB}; w, \Omega_m, \Omega_{DE}) = \frac{\sqrt{\Omega_m}}{\sqrt{|\Omega_k|}} \left[S_k \left(\left| \Omega_k \right|^{1/2} \int_0^{z_{CMB}} \frac{dz}{E(z)} \right) \right]$$

with

$$\chi_{CMB}^{2} = [(R(z_{CMB}; w, \Omega_{m}, \Omega_{DE}) - 1.710)/0.019]^{2} \text{ for } z_{CMB} = 1090$$

Likelihood Analysis with BAO and CMB Priors

Recent Dark Energy Constraints

Improved SN constraints

Inclusion of constraints from WMAP Cosmic Microwave Background Anisotropy and SDSS Large-scale Structure (Baryon Acoustic Oscillations)

Only statistical errors shown

assuming flat Univ. and constant *w*

SNLS Preliminary 3rd year Hubble Diagram

- Conley et al, Guy etal (2010): results with ~252 SNLS SNe
- Independent analyses with 2 light-curve fitters: SALT2, SiFTO

Use the SDSS 2.5m telescope

- September 1 November 30 of 2005-2007
- Scan 300 square degrees every 2 days
- Obtain densely sampled multi-color light curves
- Results published from 2005 season

Kessler, et al 09; Lampeitl et al 09; Sollerman et al 09

SDSS II Supernova Survey Goals

- Obtain few hundred *high-quality** SNe Ia light curves in the `redshift desert' *z*~0.05-0.4 for continuous Hubble diagram
- Probe Dark Energy in *z* regime complementary to other surveys
- Well-observed sample to anchor Hubble diagram, train light-curve fitters, and explore systematics of SN Ia distances
- Rolling search: determine SN/SF rates/properties vs. *z*, environment
- Rest-frame *u*-band templates for z > 1 surveys
- Large survey volume: rare & peculiar SNe, probe outliers of population

*high-cadence, multi-band, well-calibrated

SDSS-II SN Survey Team

Fermilab	J. Frieman (U Chicago), F. DeJongh, J. Marriner, D. McGinnis, G. Miknaitis		
U Chicago	B. Dilday, R. Kessler, M. Subbarao (Adler Planetarium)		
APO	J. Barentine, H. Brewington, J. Dembicky, M. Harvanek, J. Krzesinski, B. Ketzeback, D.		
	Long, O. Malanushenko, V. Malan	nushenko, R. McMillan, K. Pan, S. Saurage, S. Snedden, S.	
	Watters		
U Washington	A. Becker, C. Hogan, J. VanderPlas		
NMSU	T. Gueth, J. Holtzman		
OSU	D. Depoy, J. Marshall, J. Prieto		
U Tokyo	M. Doi, K. Konishi, T. Morokuma, N. Takanashi, K. Tokita, N. Yasuda		
U Portsmouth	H. Lampeitl, R. Nichol, M. Smith		
KIPAC	R. Blandford, S. Kahn, R. Romani, C. Zheng		
U Penn	C. D'Andrea, J. Mosher, M. Sako		
Rutgers	S. Jha		
SAAO	B. Bassett, E. Elson, P. Vaisanen, K. van der Heyden		
RIT	M. Richmond		
Penn State	D. Schneider	Creatroscenia fallour un talescenas	
Notre Dame	P. Garnavich	Spectroscopic follow-up telescopes	
STScI	A. Riess		
Wayne State	D. Cinabro, Matt Taylor		
SNU	C. Choi, M. Im		
HET team	Goettingen (W. Kollatschny), Munich (R. Bender, U. Hopp), U Texas (C. Wheeler, P.		
	Hoeflich)		
ESO team	A. Aragon-Salamanca, M. Bremer, F. Castander, C. Collins, A. Edge, A. Goobar, C.		
	Henriksen, G. Leloudas, J. Lucey, J. Mendez, L. Ostman, K. Romer, P. Ruiz-Lapuente, J.		
	Sollerman, M. Stritzinger, M. Turatto R. Miquel, M. Molla, L. Galbany		
MDM team	R. Assef, A. Crotts, J. Eastman, M. Eyler, C. Morgan, K. Schlesinger, L. Watson		
Subaru team	Y. Ihara		
KPNO team	M. Florack, A. Hirschauer, D. O'Connor		
Keck team	R. Foley, A. Filippenko		

Searching For Supernovae

SDSS SN Photometry

Holtzman etal (2008)

Spectroscopic Target Selection

Sako etal 2008

Spectroscopic Target Selection

SN and Host Spectroscopy

MDM 2.4m NOT 2.6m APO 3.5m NTT 3.6m KPNO 4m WHT 4.2m Subaru 8.2m HET 9.2m Keck 10m Magellan 6.5m TNG 3.5m SALT 10m SDSS 2.5m

Determine SN Type and Redshift

Fitting SN Ia Light Curves

- Multi-color Light Curve Shape (MLCS2k2) Riess, etal 96, 98; Jha, etal 2007
- SALT-II

Guy, etal 05,08

MLCS2k2 -16 Light-curve -14-20 Templates -18 in rest-frame *j*=*UBVRI*; -16 built from ~100 -14 well-observed, nearby SNe Ia

time-dependent model "vectors" trained on Low-z SNe

lime of maximum

bbserved
bassband
$$m_{mod}^{i}(t-t_{0}) = \mu + M^{j}(t-t_{0}) + P^{j}(t-t_{0})\Delta + Q^{j}(t-t_{0})\Delta^{2}$$

 $+ K^{ij}(t-t_{0}) + X^{j}_{host}(t-t_{0}) + X^{i}_{MW}(t-t_{0})$
fit parameters
Time of maximum distance modulus host gal extinction stretch/decline rate

Host Galaxy Dust Extinction

•Extinction:

$$A_{\lambda} = -2.5 \log \left(\frac{f_{obs}(\lambda)}{f_{true}(\lambda)} \right)$$

•Empirical Model for wavelength dependence:

$$\frac{A_{\lambda}}{A_{V}} = a(\lambda) + \frac{b(\lambda)}{R_{V}}$$

•MLCS: A_V is a fit parameter, but R_V is usually fixed to a global value (sharp prior) since it's usually not well determined SN by SN

Host Galaxy Dust Extinction

0.3

Historically, MLCS used Milky Way average of $R_V=3.1$

Growing evidence that this doesn't represent SN host galaxy population well

0.2 $-R_v = 1.9$ - - - SALT2 Av [mag] $\dots R_v = 3.1$ 0.1 Milky Way avg. 0.0 ₹ -0.1E(B-V) = 0.10-0.24000 9000 3000 5000 6000 7000 8000 wavelength [angstroms] $R_v = 1.9$ --- SALT2 (normalized to $R_v = 1.9$) 2.0

Jha

Extract R_V by matching colors of SDSS SNe to MLCS simulations

$$\left\langle R_V \right\rangle = \frac{A_V}{E(B-V)} \approx 2$$

- Use nearly complete (spectroscopic + photometric) sample
- MLCS previously used Milky Way $avg R_V = 3.1$
- Lower R_V more consistent with SALT color law and other recent SN R_V estimates

D. Cinabro

Carnegie Supernova Project: Low-z

- ✤ CSP is a follow-up project
- Goal: optical/NIR light-curves and spectro-photometry for
 - SNIa > 100 nearby SNIa
 - → > 100 SNII
 - → > 20 SNIbc
- ∞ Filter set: BV + u'g'r'i' + YJHK
- Understand SN physics
- ✤ Use as standard candles.
- ✤ Calibrate distant SN Ia sample

CSP Low-z Light Curves

Folatelli, et al. 2009 Contreras, et al. 2009: 35 optical light curves (25 with NIR)

Varying Reddening Law?

Folatelli et al. (2009)

Local Dust?

Goobar (2008): higher density of dust grains in a shell surrounding the SN: multiple scattering steepens effective dust law (also Wang)

Folatelli et al. (2009)

MLCS fit to one of the ESSENCE SNe

h283.v025.nn2

$$t_0 = 53321.911 \quad R_v = 3.10$$

$$\Delta = 0.08 \quad A_v = 0.26$$

$$\mu_0 + 5 \log (H_0/65) = 42.51$$

$$E(B-V)_{MW} = 0.03 \quad z = 0.5020$$

$$\chi^2/\nu = 5.54/4$$

Marginalized PDFs

MLCS Likelihood Contours for this object

SALT-II Light-curve Fits

• Fit each light curve using rest-frame *spectral* surfaces:

$$\frac{dF_{\text{rest}}}{d\lambda}(t,\lambda) = x_0 \times [M_0(t,\lambda) + x_1 \times M_1(t,\lambda)] \times \exp[c \times CL(\lambda)]$$

• Light curves fit individually, but distances only estimated globally:

$$\mu_i = m_{B_i}^* - M + \alpha \cdot x_{1,i} - \beta \cdot c_i \qquad \alpha \sim 0.15, \ \beta \sim 2.5$$

color ter

Global fit parameters, determined *along with* cosmological parameters by fit to Hubble diagram (so in principle you should not use SALT distance tables to test some other cosmological model)

•Differences from MLCS: not trained just on low-redshift data; flat priors on model parameters; color variations *not* assumed only from dust. *If* dust, then $\beta = R_V + 1$. Find $\beta \sim 2.5$ empirically.

Color correction: technique matters

Redder SNe are fainter because of:

Extinction correction methods:

MLCS: Separate effects of intrinsic color and dust

- Must assume intrinsic SN color distribution with stretch, phase
- Use color to get extinction from assumed dust extinction law

SNLS: Empirical correction

 $\mu_{\rm B} = m_{\rm B} - M_{\rm B} + \alpha(s-1) - \beta c$

 $\beta \sim R_B = A_B / E(B-V)$ 4.1 if MW dust

Hubble Diagram

Hubble Diagram with SDSS SNe

103 SNe Ia from first season that pass stringent light-curve quality cuts

Kessler etal (2009) Lampeitl etal (2009) Sollerman etal (2009)

SALT vs MLCS template light curves

Diagnosis:

Large difference in Light-curve model in U-band

Use of prior on extinction in MLCS

A Tale of Two Fitters

MLCS:

U-band model trained only on low-redshift (observerframe) U-band data (calibration, atmospheric variations)
Assumes *all* excess color due to dust extinction (some of it must be); dust prior dominates at high-redshift

SALT:

• Global fit for color/dust parameter β: minimizing Hubble-scatter can lead to bias

• Trend toward bluer colors at high-z: if allow $\beta(z)$, see strong trend with redshift

•Retrain and refine the models with newer data

SALT Parameters vs. Redshift

A Hubble Bubble?

Whatever the cause (real void or systematic effect), this signal is in the low-z data and has a huge impact on measuring w! To proceed we need to check and understand this result.

See also Conley et al 2007: treatment of dust & SN colors

Jha, Riess, & Kirshner (2006)

Vary minimum redshift

48

Correlations of SN Ia and Host-galaxy Properties

Host Population correlated with SN Ia Luminosity

Sullivan et al. 2006, Howell et al. 2007, Jha etal 2007

Also brighter SNe in lower-stellar-mass hosts

SN Ia Luminosity correlates with Host Galaxy Type

SN Ia Color doesn't correlate strongly with Host Galaxy Type

Why aren't `spirals' dustier than `ellipticals'?

SN Rates vs. redshift "Prompt" SNe follow declining Sullivan et al. 2006, Howell et al. 2007 cosmic star formation history (Hopkins & Beacom 2006), "Delayed" SNe follow growing stellar mass distribution S06 Prompt S06 Total LOG(SN la Rate) (events yr⁻¹ Mpc⁻³) -4.0 B component 12 star forming hosts -4.5 A component passive hosts Number B (Prompt) A (Delayed) -5.0 0.8 1.0 0.6 1.2 1.4 Stretch 1.5 0.0 0.5 1.0 2.0 Redshift

Predict relative contribution from each component vs. redshift

SN population drift vs. z

Howell et al. 2007

Histograms: data Gaussians: prediction from rates

Conclusion: Average stretch, and thus average *observed* brightness of SNe Ia **evolves** with redshift.

Average SN Ia was 12% brighter at z > 1.

However, if stretch correction works, this population evolution should not affect cosmology

Events of same light-curve shape and color are ~0.08 mag brighter (after LCS correction) on avg. in galaxies with low star-formation rate (or high stellar mass): *opposite* to pre-correction trend Sullivan etal 10

Events of same light-curve shape and color are ~0.08 mag brighter (after LCS correction) on avg. in galaxies with low star-formation rate (or high stellar mass): opposite to pre-correction trend: metallicity effect? Sullivan etal 10

Fit cosmology with 2 populations of M_B : shifts w by~0.04-0.08 with BAO prior

Same trend seen in low-redshift SN Ia sample Kelly etal 09

Systematic Errors (and Controls)

- Dust and SN color variation (multi- λ , NIR, high S/N)
- U-band model discrepancy (retrain with better rest-frame Uband data, e.g., from SDSS SN g-band)
- Minimum redshift effect (model coherent flows; larger, better, low-redshift samples)
- Selection effects (artificial SNe, Monte Carlo simulations)
- Population evolution (SN properties vs host environment)
- Photometric calibration (system response calibration & cross-calibration of systems)
- Sample purity (spectroscopy at least for subsample)
- All (subdivide large samples to cross-check)

The Future is (Mostly) Photometric

- Pan-STARRS, Dark Energy Survey, LSST: thousands to tens of thousands of multi-band light curves to *z*~1
- Limited spectroscopic resources for follow-up, replace spectroscopic with photometric SN classification
- Very large samples will enable subdivision to study correlations and control systematics
- Photometric-redshift precision at high-*z* does not critically impact DE constraints but degrades (SN-type) sample purity
- SN spectroscopic subsamples (both Ia and non-Ia) required to quantify purity and define SN Ia color selection. SDSS SN test of photometric classifier: ~92% complete, 5% impurity (M. Sako)

DES SN Simulated Light Curves

DARK ENERGY SURVEY

See Bernstein etal draft DES SN paper on the class website (do not circulate)

DES + VISTA VIDEO NIR

Photometric Redshift Only?

Statistical uncertainties only ~3000 well-measured 200 **Photometric** 190 redshift=SN **DETF Figure of Merit** colors plus 180 galaxy colors 170 **160 150** Statistical Errors Only! 140 DES will obtain 130 host spectroscopic Suppressed 0! 120 redshifts (improves 0.2 0.4 0.6 0.8 1.2 n 1 typing); photo-z **Redshift Cutoff** Spectroscopic redshifts cosmology more below this cutoff. relevant for LSST Photometric above. 64

Supernova Photo-z's

Include redshift as a light-curve fit parameter

LSST Simulation

Kessler, et al 2010

Development of Photometric SN Classification Techniques

Blind SN Classification Challenge:

Simulated DES light curves of different SN types

Host photo-z's

Spectroscopically confirmed subsample for training

Cuts: purity vs completeness

Kessler etal 10

Cosmology for Photometric SN samples

Cosmology fits generalized to include probability that a given event is a SN Ia, based on some photometric classification technique.

Will improve results from current SN surveys by including their larger photometric SN Ia datasets

Will be necessary for future surveys, for which spectroscopic classification will be available for only a small fraction of events

Places a premium on characterizing non-Ia populations

Hlozek etal 2010

