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The Dark Energy Survey
•  Study Dark Energy using 
    4 complementary* techniques:
        I. Cluster Counts
      II. Weak Lensing
      III. Baryon Acoustic Oscillations
      IV. Supernovae

•    Two multiband surveys:
         5000 deg2 g, r, i, z, Y to 24th mag
       15 deg2 repeat (SNe)

•    Build new 3 deg2 FOV camera 
       and Data management sytem
      Survey 2012-2017 (525 nights)
      Camera available for community 

use the rest of the time (70%)

Blanco 4-meter at CTIO 

*in systematics & in cosmological parameter degeneracies 
*geometric+structure growth: test Dark Energy vs. Gravity 

www.darkenergysurvey.org



DES Instrument: DECam 

Hexapod 

Optical  
Lenses 

CCD 
Readout Filters  

Shutter 

Mechanical Interface of 
DECam Project to the Blanco 

Designed for improved image quality compared to current Blanco mosaic camera 
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The Universe is filled with 
a bath of thermal radiation

COBE map of the 
CMB temperature 

On large scales, the CMB temperature 
is nearly isotropic around us (the same 
in all directions): snapshot of the young 
Universe, t ~ 400,000 years

T = 2.728 degrees
above absolute zero

Cosmic Microwave Background Radiation 

Temperature fluctuations 
δT/T~10-5 
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The Cosmological Principle



The only 
mode that 
preserves 
homogeneity 
and isotropy 
is overall 
expansion or 
contraction: 

Cosmic scale 
factor  

Model completely 
specified by a(t) 
and sign of spatial 
curvature € 

a(t)
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On average, galaxies are at 
rest in these expanding
(comoving) coordinates, 
and they are not 
expanding--they are 
gravitationally bound.

Wavelength of radiation 
scales with scale factor: 

Redshift of light:

indicates relative size of 
Universe directly

€ 

a(t1)

€ 

a(t2)

€ 

λ ~ a(t)

€ 

1+ z =
λ(t2)
λ(t1)

=
a(t2)
a(t1)
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Distance between 
galaxies:

where
          fixed comoving 
distance

Recession speed:

Hubble’s Law (1929)

€ 

a(t1)

€ 

a(t2)

€ 

υ =
d(t2) − d(t1)

t2 − t1
=
r[a(t2) − a(t1)]

t2 − t1

=
d
a
da
dt

≡ dH(t)

≈ dH0 for `small'  t2 − t1

€ 

d(t) = a(t)r

€ 

r =

€ 

d(t2)



Modern
Hubble
Diagram

Hubble 
Space 
Telescope
Key
Project

Freedman etal 

Hubble parameter 



Expansion Kinematics
•  Taylor expand about present epoch:

where                 ,                   and   
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€ 

H0 = ( ˙ a /a) t= t0

Recent 
expansion 
history 
completely 
determined by 
H0 and q0  



How does the expansion of the 
Universe change over time? 

    Gravity:  

  everything in the Universe attracts everything else 

  expect the expansion of the Universe should slow  
          down over time 
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Cosmological Dynamics
How does the scale factor of the Universe evolve?
                  Consider a homogenous ball of matter:
                                  Kinetic Energy   

                                  Gravitational Energy  

Conservation of Energy:                                Birkhoff’s theorem      

Substitute                 and                                to find

K interpreted as spatial curvature in General Relativity                       

m
d

M

1st order 
Friedmann
equation

€ 

mυ 2 /2

€ 

−GMm /d

€ 

E =
mυ 2

2
−
GMm
d

€ 

υ = Hd

€ 

M = (4π /3)ρd3

€ 

2E
md2

≡ −
K
a2(t)

= H 2(t) − 8π
3

 

 
 

 

 
 Gρ(t)



Local Conservation of Energy-Momentum
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€ 

First law of thermodynamics :
dE = −pdV
Energy :
E = ρV ~ ρa3

First Law becomes :
d(ρa3)

dt
= −p d(a3)

dt
a3 ˙ ρ + 3ρa2 ˙ a = −3pa2 ˙ a   ⇒
dρi

dt
+ 3H(t)(pi + ρi) = 0



2nd Order Friedmann Equation
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€ 

First order Friedmann equation :

˙ a 2 =
8πG

3
ρa2 − k

Differentiate :

2 ˙ a ̇  ̇ a = 8πG
3

(a2 ˙ ρ + 2a ˙ a ρ) ⇒

˙ ̇ a 
a

=
4πG

3
˙ ρ 

a
˙ a 

 

 
 
 

 
 + 2ρ

 

 
 

 

 
 

Now use conservation of energy - momentum :
dρi

dt
+ 3H(t)(pi + ρi) = 0 ⇒

2nd order Friedmann equation :
˙ ̇ a 
a

=
4πG

3
−3( p + ρ) + 2ρ[ ] = −

4πG
3

ρ + 3p[ ]



        Cosmological Dynamics

€ 

˙ ̇ a 
a

= −
4πG

3 i
∑ ρi +

3pi

c 2

 

 
 

 

 
 

€ 

Equation of state parameter :  wi = pi /ρic
2 

    Non - relativistic matter :  pm ~ ρm v2, w ≈ 0
    Relativistic particles :  pr = ρrc

2 /3, w =1/3 

€ 

H 2(t) =
˙ a 
a
 

 
 
 

 
 

2

=
8πG

3
ρi(t)

i
∑ −

k
a2(t)

Friedmann
Equations

Density    Pressure

Spatial curvature: k=0,+1,-1
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Einstein-de Sitter Universe:�
a special case

17

Non-relativistic matter: w=0, ρm~a-3

Spatially flat: k=0  Ωm=1

Friedmann: 

€ 

˙ a 
a
 

 
 
 

 
 

2

~ 1
a3  ⇒  a1/ 2da ~ dt ⇒  a ~ t 2 / 3

H =
2
3t



Size of the
Universe

Cosmic Time

Empty

Today

In these 
cases,  
decreases 
with time,  
         : , 
expansion 
decelerates 
due to 
gravity  

€ 

˙ a 

€ 

˙ ̇ a < 0

-2/3 



Size of the
Universe

Cosmic Time

EmptyAccelerating

Today

p = -ρ (w = -1)

€ 

˙ ̇ a > 0
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``Supernova Data” 
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Supernova Data (1998) 

€ 

a(t)
a(t0)
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Discovery of 
Cosmic 
Acceleration from 
High-redshift
Supernovae

Type Ia supernovae 
that exploded when 
the Universe was 2/3 
its present size are 
~25% fainter than 
expected

ΩΛ = 0.7
ΩΛ = 0.
Ωm = 1.

Log(distance) 

redshift 

Accelerating 

Not accelerating 



        Cosmological Dynamics

€ 

˙ ̇ a 
a

= −
4πG

3 i
∑ ρi +

3pi

c 2

 

 
 

 

 
 

€ 

Equation of state parameter :  wi = pi /ρic
2 

    Non - relativistic matter :  pm ~ ρm v2, w ≈ 0
    Relativistic particles :  pr = ρrc

2 /3, w =1/3
    Dark Energy : component with negative pressure :  wDE < −1/3 

€ 

H 2(t) =
˙ a 
a
 

 
 
 

 
 

2

=
8πG

3
ρi(t)

i
∑ −

k
a2(t)

Friedmann
Equations



€ 

ρm ~ a
−3

€ 

ρr ~ a
−4

€ 

ρDE ~ a
−3(1+w )

€ 

wi(z) ≡
pi
ρi

˙ ρ i + 3Hρi(1+ wi) = 0

=Log[a0/a(t)] 

Equation of State parameter w determines Cosmic Evolution

Conservation of Energy-Momentum 



Early 1990’s: Circumstantial Evidence 
The theory of primordial inflation successfully accounted for 
the large-scale smoothness of the Universe and the large-
scale distribution of galaxies. 

Inflation predicted what the total density of the Universe 
should be: the critical amount needed for the geometry of the 
Universe to be flat: Ωtot=1. 

Measurements of the total amount of matter (mostly dark) in 
galaxies and clusters indicated not enough dark matter for a 
flat Universe (Ωm=0.2): there must be additional unseen stuff 
to make up the difference, if inflation is correct. 

Measurements of large-scale structure (APM survey) were 
consistent with scale-invariant primordial perturbations from 
inflation with Cold Dark Matter plus Λ. 



Cosmic Acceleration

This implies that                 increases with time: if 
we could watch the same galaxy over cosmic 
time, we would see its recession speed increase.

Exercise 1: A. Show that above statement is true.  
B. For a galaxy at d=100 Mpc, if H0=70 km/sec/
Mpc =constant, what is the increase in its 
recession speed over a 10-year period? How 
feasible is it to measure that change?

€ 

˙ ̇ a > 0→
˙ a = Ha increases with time

€ 

υ = Hd



What is the evidence for cosmic acceleration?

What could be causing cosmic acceleration?

How do we plan to find out?



Cosmic Acceleration

What can make the cosmic expansion speed up? 

1.  The Universe is filled with weird stuff that gives 
      rise to `gravitational repulsion’. We call this  
                                    Dark Energy

2.  Einstein’s theory of General Relativity is wrong on 
cosmic distance scales.

3.  We must drop the assumption of homogeneity/isotropy.
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Cosmological Constant as Dark Energy

Einstein:

Zel’dovich 
and Lemaitre:  

€ 

Gµν − Λgµν = 8πGTµν

Gµν = 8πGTµν +Λgµν

      ≡ 8πG Tµν (matter) + Tµν (vacuum)( )

€ 

Tµν (vac) = Λ
8πG

gµν

ρvac = T00 =
Λ

8πG
,   pvac = Tii = −

Λ
8πG

wvac = −1 ⇒  H = constant ⇒  a(t)∝exp(Ht)
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Recent Dark Energy 
Constraints 

Constraints from 
Supernovae, Cosmic 
Microwave Background 
Anisotropy (WMAP) and 
Large-scale Structure 
(Baryon Acoustic 
Oscillations, SDSS) 
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Progress 
over the 
last 
decade



Components of the Universe 

Dark Matter: clumps, holds galaxies and clusters together 
Dark Energy: smoothly distributed, causes expansion of Universe to   
                       speed up 
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Only statistical errors shown 

assuming flat Univ. 
and constant w 
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•  Depends on constituents of the Universe:

History of Cosmic Expansion

€ 

E 2(z) ≡ H
2(z)
H0

2 = Ωi
i
∑ (1+ z)3(1+wi ) +Ωk (1+ z)2  for constant wi

=Ωm (1+ z)3 +ΩDE exp 3 (1+ w(z))d ln(1+ z)∫[ ] + 1−Ωm −ΩDE( ) 1+ z( )2

where

Ωi =
ρi
ρcrit

=
ρi

(3H0
2 /8πG)
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Cosmological Observables 

€ 

ds2 = c 2dt 2 − a2(t) dχ 2 + Sk
2(χ) dθ 2 + sin2θ dφ 2{ }[ ]

= c 2dt 2 − a2(t) dr2

1− kr2 + r2 dθ 2 + sin2θ dφ 2{ }
 

 
 

 

 
 

Friedmann- 
Robertson-Walker 
Metric: 

                    where 

Comoving distance: 
€ 

r = Sk (χ) = sinh(χ),  χ,  sin(χ) for k = −1,0,1

€ 

cdt = a dχ ⇒  χ =
cdt
a∫ =

cdt
ada∫ da = c da

a2H(a)∫

€ 

a =
1

1+ z
 ⇒  da = −(1+ z)−2 dz = −a2dz

c dt
da

da = adχ ⇒  − c
˙ a 

a2dz = adχ ⇒  − cdz = H(z)dχ



Age of the Universe 
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€ 

cdt = adχ

t = adχ =
da

aH(a)∫∫ =
dz

(1+ z)H(z)∫

t0 =
1
H0

dz
(1+ z)E(z)0

∞

∫
where E(z) = H(z) /H0
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Exercise 2:

A. For w=-1(cosmological constant Λ) and k=0:

Derive an analytic expression for H0t0 in terms of  
Plot  

B. Do the same, but for 
C. Suppose H0=70 km/sec/Mpc and t0=13.7 Gyr. 

Determine        in the 2 cases above.
D. Repeat part C but with H0=72.

€ 

E 2(z) =
H 2(z)
H0
2 =Ωm (1+ z)3 +ΩDE exp 3 (1+ w(z))d ln(1+ z)∫[ ] + 1−Ωm −ΩDE( ) 1+ z( )2

€ 

E 2(a) =
H 2(a)
H0
2 =Ωma

−3 +ΩΛ

€ 

Ωm

€ 

H0t0 vs. Ωm

€ 

ΩΛ = 0, Ωk ≠ 0

€ 

Ωm



Age of the Universe
×(

H
0/7

2)
 

(flat) 
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Angular Diameter Distance 

•  Observer at r =0, t0 sees source of proper diameter D at 
coordinate distance r =r1 which emitted light at t =t1: 

•  From FRW metric, proper distance across the source is 
                      so the angular diameter of the source is 

•  In Euclidean geometry,                so we define the 
€ 

D = a(t1)r1θ

€ 

θ = D /a1r1

€ 

d = D /θ

Angular Diameter Distance:   

€ 

dA ≡
D
θ

= a1r1 = a1Sk (χ1) =
r1a0
1+ z1

θ D 
r =0 

r =r1 



Luminosity Distance
•  Source S at origin emits light at time t1 into solid angle dΩ, 
  received by observer O at coordinate distance r at time t0, with 
  detector of area A: 

S 

A 

r 
θ 

Proper area of detector given by the metric: 

Unit area detector at O subtends solid angle 

                    at S. 

Power emitted into dΩ is 

Energy flux received by O per unit area is   

€ 

A = a0r dθ a0rsinθ dφ = a0
2r2dΩ

€ 

dΩ =1/a0
2r2

€ 

dP = L dΩ /4π

€ 

f =
L dΩ
4π

=
L

4πa0
2r2



Include Expansion
•  Expansion reduces received flux due to 2 effects: 
         1. Photon energy redshifts: 
         2. Photons emitted at time intervals δt1 arrive at time 
             intervals δt0: 

€ 

Eγ (t0) = Eγ (t1) /(1+ z)

€ 

dt
a(t)t1

t0

∫ =
dt
a(t)t1 +δ t1

t0 +δ t0

∫

dt
a(t)t1

t1 +δ t1

∫ +
dt
a(t)t1 +δ t1

t0

∫ =
dt
a(t)t1 +δ t1

t0

∫ +
dt
a(t)t0

t0 +δ t0

∫

δt1
a(t1)

=
δt0
a(t0)

 ⇒  δt0
δt1

=
a(t0)
a(t1)

=1+ z

€ 

f =
L dΩ
4π

=
L

4πa0
2r2(1+ z)2 ≡

L
4πdL

2   ⇒   dL = a0r(1+ z) = (1+ z)2dA

Luminosity Distance Convention: choose a0=1 
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Worked Example I

For w=-1(cosmological constant Λ):

Luminosity distance: 

€ 

E 2(z) =
H 2(z)
H0
2 =Ωm (1+ z)3 +ΩDE exp 3 (1+ w(z))d ln(1+ z)∫[ ] + 1−Ωm −ΩDE( ) 1+ z( )2

€ 

dL (z;Ωm,ΩΛ ) = r(1+ z) = c(1+ z)Sk
da

H0a
2E(a)∫

 

 
 

 

 
 

= c(1+ z)Sk
da

H0a
2[Ωma

−3 +ΩΛ + (1−Ωm −ΩΛ )a
−2]1/ 2∫

 

 
 

 

 
 

€ 

E 2(a) =
H 2(a)
H0
2 =Ωma

−3 +ΩΛ + 1−Ωm −ΩΛ( )a−2
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Worked Example II

For a flat Universe (k=0) and constant Dark Energy 
equation of state w:

   Luminosity distance: 

€ 

E 2(z) =
H 2(z)
H0
2 =Ωm (1+ z)3 +ΩDE exp 3 (1+ w(z))d ln(1+ z)∫[ ] + 1−Ωm −ΩDE( ) 1+ z( )2

€ 

E 2(z) =
H 2(z)
H0
2 = (1−ΩDE )(1+ z)3 +ΩDE (1+ z)3(1+w )

€ 

dL (z;ΩDE ,w) = r(1+ z) = χ(1+ z) =
c(1+ z)
H0

da
a2E(a)∫

=
c(1+ z)
H0

1+ΩDE[(1+ z)3w −1]−1/ 2

(1+ z)3 / 2∫ dz

Note: H0dL is independent of H0 
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Dark Energy Equation of State 

Curves of  
constant dL 

at fixed z 

z =  

Flat Universe 



Exercise 3 

•  Make the same plot for Worked Example I: plot 
curves of constant luminosity distance (for several 
choices of redshift between 0.1 and 1.0) in the plane 
of                  , choosing the distance for the model 
with                               as the fiducial.  

•  In the same plane, plot the boundary of the region 
between present acceleration and deceleration. 

•  Extra credit: in the same plane, plot the boundary of 
the region that expands forever vs. recollapses.   

45 

€ 

ΩΛvs. Ωm

€ 

ΩΛ = 0.7, Ωm = 0.3
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Bolometric Distance Modulus
•  Logarithmic measures of luminosity and flux:

•  Define distance modulus:

•  For a population of standard candles (fixed M), measurements of µ 
vs. z, the Hubble diagram, constrain cosmological parameters.

€ 

M = −2.5log(L) + c1,    m = −2.5log( f ) + c2 

€ 

µ ≡ m −M = 2.5log(L / f ) + c3 = 2.5log(4πdL
2 ) + c3

= 5log[H0dL (z;Ωm,ΩDE ,w(z))]− 5logH0 + c4
= 5log[dL (z;Ωm,ΩDE ,w(z)) /10pc]

flux                                     measure redshift from spectra 



Exercise 4

•  Plot distance modulus vs redshift (z=0-1) for:
•  Flat model with
•  Flat model with
•  Open model with

– Plot first linear in z, then log z.    
•  Plot the residual of the first two models with 

respect to the third model
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€ 

Ωm =1

€ 

ΩΛ = 0.7, Ωm = 0.3

€ 

Ωm = 0.3
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Discovery of 
Cosmic 
Acceleration from 
High-redshift
Supernovae

Type Ia supernovae 
that exploded when 
the Universe was 2/3 
its present size are 
~25% fainter than 
expected

ΩΛ = 0.7
ΩΛ = 0.
Ωm = 1.

Log(distance) 

redshift 

Accelerating 

Not accelerating 



Distance and q0
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Distance and q0
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Recall



Distance and q0
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Recall


