Astronomy 304: Astrophysics IV Spring Quarter 2010 Problem Set 1 Due: Tuesday, April 20 If you have any questions, please contact me before the due date by email: frieman@fnal.gov. - 1. Suppose the Universe consists of non-relativistic, pressureless matter (m) with present density parameter $\Omega_m = \rho_m(t_0)/\rho_{crit}(t_0)$, radiation (relativistic particles) with present density parameter Ω_r , and a dark energy component (d) with equation of state $p_d = w_d \rho_d$, where $w_d < 0$ is constant, and present density parameter Ω_d . - (a) Derive an expression for the deceleration parameter $q_0 \equiv -(\ddot{a}/H^2a)_0$ in terms of these density parameters and w_d . - (b) For the rest of this problem, neglect the tiny present radiation density, i.e., set $\Omega_r = 0$. Observations of Type Ia supernovae indicate that the Universe is currently accelerating. Suppose the dark energy component is a cosmological constant, i.e., that $w_d = -1$, and that the Universe is spatially flat $(k = 0, i.e., \Omega_{total} = 1)$. Find an upper bound on Ω_m such that the Universe could now be accelerating. - (c) Now relax the assumption above on the dark energy equation of state parameter but retain the assumption of spatial flatness. In a plot of w_d vs. Ω_m , sketch the boundary of the region $q_0 = 0$. Now assume that observations of galaxy clusters (or other measurements) indicate $\Omega_m \geq 0.2$: what bound does this place on w_d such that present accelerated expansion is possible? - 2. Consider a Friedmann Universe with non-relativistic matter and a cosmological constant. - (a) Assuming spatial flatness $(k = 0, \text{ i.e.}, \Omega_m + \Omega_{\Lambda} = 1)$, derive an exact analytic expression for the quantity $H_0 t_0$ purely in terms of Ω_{Λ} (where we define $\Omega_{\Lambda} = \Omega_d(w_d = -1)$). Plot this quantity as a function of Ω_m . - (b) Now consider a Universe with non-relativistic matter, zero cosmological constant, and assume $\Omega_m < 1$, i.e., an open universe. Derive an analytic expression for the same quantity H_0t_0 in terms of Ω_m for this case and plot the result on the same graph as above. - (c) Suppose $H_0 = 70$ km/sec/Mpc and the age of the Universe $t_0 = 13.7$ billion years. Estimate the corresponding values for Ω_m in the two cases above. Repeat the calculation assuming $H_0 = 72$ and $t_0 = 13.7$ Gyr. - 3. Consider a homogeneous and isotropic Universe filled with non-relativistic matter and a cosmological constant Λ , where $p_{\Lambda} = -\rho_{\Lambda} = -\Lambda/8\pi G$. Einstein originally introduced the cosmological constant into General Relativity because he thought the Universe was static (not contracting or expanding). - (a) In terms of the matter density ρ_m , find the critical value of the cosmological constant, denoted by Λ_c , such that the Universe is static. - (b) What is the spatial geometry of this static model, known as the Einstein static universe? - (c) By perturbing the Friedmann equations around the static solution (but preserving homogeneity and isotropy), show that the Einstein static universe is globally unstable. In terms of Λ_c , what is the characteristic growth time for the instability? - 4. Consider an expanding homogeneous and isotropic Universe with non-relativistic matter satisfying $\Omega_m > 1$ today. In the absence of a cosmological constant, we know that in such a model the expansion will halt and the Universe will eventually recollapse. Now add a cosmological constant to this model, with present density parameter Ω_{Λ} . Show that if Ω_{Λ} exceeds a critical value, the Universe will avoid recollapse, and express this critical value analytically in terms of Ω_m . Plot the boundary region between eventual recollapse and continued expansion in the Ω_m (x-axis) vs. Ω_{Λ} (y-axis) plane, for values of Ω_m between 0 and 3. For comparison, also plot the line $\Omega_{\Lambda} = 0$. - 5. For a Friedmann Universe containing only non-relativistic matter, with present density parameter $\Omega_m(0)$, derive an expression for the density parameter as a function of redshift z, i.e., express $\Omega_m(z)$ analytically in terms of $\Omega_m(0)$ and z. Also express the expansion rate H(z) analytically in terms of H_0 , $\Omega_m(0)$, and z. Now suppose $\Omega_m(0) = 0.2$: find the redshift z_m at which $\Omega_m(z_m) = 0.5$, i.e., at which the Universe became curvature-dominated (roughly). For more recent epochs, such that $z \ll z_m$, what is the approximate solution for the cosmic scale factor?