
Flash Center for Computational Science
University of Chicago

NVIDIA
February 2011

Anshu Dubey
DOE NNSA OASCR Flash Center

University of Chicago

Flash Co-Design Methodology

Flash Center for Computational Science
The University of Chicago

CECC (Chemistry)

CESAR(NE)
Flash (HEDP)

Public, Fluids with AMR,
CoDEx and vendor

Compact and Reduced
applications

ExMatEx

ECDC Consortium
Effective iterative co-
design processes and

standards
Risk Mitigation/vendor

interaction models
Forum for coordinating

activities and
dissemination of

information to wider
community

Co-design Centers and Consortium

Flash Center for Computational Science
The University of Chicago

 Applications/Applied Math
Models and Algorithms,
Infrastructure

Programming Models :
Data structures, macro/micro
Parallelism access patterns

System Software :
Operating System, I/O
Runtime environment

Hardware :
Cores, accelerators, memory
Communication networks K
er

ne
ls

 in
te

ra
ct

 d
ire

ct
ly

 w
ith

 h
ar

dw
ar

e

 N
ex

t l
ev

el
 w

or
kl

oa
d

in
cl

ud
es

 p
ro

gr
am

m
in

g

m
od

el
s

in
 th

e
in

te
ra

ct
io

n

 C

om
pa

ct
 a

pp
s

 h
av

e
re

pr
es

en
ta

tiv
e

 w
or

kl
oa

d
fo

r w
ho

le
 s

ec
tio

ns
 o

f

 a
pp

lic
at

io
n

w
ith

 ru
nt

im
e

en
vi

ro
nm

en
t

Vertical Integration

Flash Center for Computational Science
The University of Chicago

Kernels & Reduced Application

Top level:
• API

• Unit Test

Data Module

Wrapper

Kernel

Unit test is effectively a reduced application

Flash Center for Computational Science
The University of Chicago

Compact Applications

Compact applications use simplified interaction among units to
create a subset of the application functionality

Unit1

Data Module

Wrapper

Kernel

Unit2

Data Module

Wrapper

Kernel

 Driver

Flash Center for Computational Science
University of Chicago

Co-Design
Interaction

Team

Code Team
Hydro/MHD Mesh Radiation

CoDEx/
CODES

Simulators

Vendor
Simulators

Exascale Software and
Reduced Apps

 Math
Solvers

 V&V

Verification

Experimental
validation

Algorithms

Compact
Apps/

Kernels

Programming
Models

System
Software

Data Analysis
And Viz

CS Team

Platforms

Vendor
Parti-

cipation

Flash Co-Design Interaction

Flash Center for Computational Science
The University of Chicago

Co-Design Process

Representative
workload:
Identify
bottlenecks,
optimize
implementations

Well defined in
the short term:

Refine the
process iteratively

Performance
engineering

Application
Programming
models, OS
Kernels, I/O stack

Software

Fault tolerance

Hardware

Performance
engineering

Simulators
& Prototypes

Flash Center for Computational Science
The University of Chicago

Co-Design Process

Representative
workload
Explore new
models
and algorithms

Less Well defined
in longer term:

difficult to predict
state-of-the-art

in far future
Performance
engineering

Application
Programming
Models, OS
Kernels, I/O stack

Software

Fault tolerance

Hardware

Performance
engineering

Simulators
& Prototypes

Flash Center for Computational Science
The University of Chicago

Expected Challenges

Across the Nodes
  Parallel IO
  Higher degree of macro

parallelism
  Higher fidelity physics dictates

greater coupling
  Implicit/semi-implicit treatment

At Node Level
  Memory intensive computations
  Increasing limits on available

memory per process

Faults
  Frequent failures
  Silent errors

  New parallel algorithms
  Trade-off between duplication

and communication
  Possibly more hierarchy

  Aggressive reuse of memory
  Distinguish between cores
  New algorithms

  Non-deterministic algorithms
  Redundancy

Flash Center for Computational Science
The University of Chicago

What Applications Can Do

  Greater encapsulation
  Minimize common data
  Maximize code sections that

are re-entrant
  Increase isolation between

layers
  Separate code functionalities

such that different optimizations
are applicable to different layers

  Minimize kernel dependency
on programming models

  Expose optimization and
fault tolerance possibilities
  Be clearer about dependencies
  Identify critical sections Vs the

non critical sections
  Define more compact working

sets

  Explore more inherently
robust alternative algorithms
  Stochastic Vs deterministic

What the applications shouldn’t have to do is to rewrite
half a million lines of code. It isn’t even always
possible because physics is what it is

Flash Center for Computational Science
The University of Chicago

What Applications need from Co-Design

 Abstraction
 Retain code

portability
 Enable layering in

architecture
 Standardized

interfaces for
common
functionalities

 Framework for
testing ideas
 Fault notification and

recovery models
 Ability to evaluate

direct influence of
architecture
decisions

 Tuning parameters

