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THE PROBLEM

* 3D CCSN simulations take

months of supercomputer
time

o Still need 1D models for...

* Population studies,
nuclear EQOS,
nucleosynthesis,
neutrino physics, etc

* But we need to do better!




SUPERNOVA TURBULENCE IN REDUCED-
DIMENSIONALITY (STIR) MODEL

Reproduce physical explosion
mechanism (turbulence and
convection) in spherical
symmetry

Better replicate local
thermodynamics
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Increasing turbulence strength

LANDSCAPE OF

PROGENITORS:

- XPLODARB

Explodes
Doesn’t explode
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LANDSCAPE OF

- XPLODABILITY

IIII II. (see O'Connor & Couch (2018))
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Increasing turbulence strength

LANDSCAPE OF

PROGENITORS:

- XPLODARB

Explodes
Doesn’t explode
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A BRIEF INTERLUDE ON CORRELATIONS

Pearson r value:

* Varies between -1 and 1

e \alue tells you about strength of correlation

e Sign tells you about relationship between variables
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MULTI-MESSENGER SIGNALS:

IGHT CURVE

For M < 15.3 Mg I°~8
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MULTI-MESSENGER SIGNALS:

NEUTRINOS

DO
©

N
(0.¢]

N
o

=
=
e}
>
o0
—
(5}
=
()
S
5}
(o8
n
+
o
)
>
=

(N} DO
ot ~
Explosion energy [10°! ergs]

N
"~

Energy [MeV]

Warren, Couch, & O'Connor (in prep)

[\
[\
t

o
o
S

Modeled neutrino

—_
\]
t

ﬂ'

Neutrino counts [10°]
Neutron star mass [M]

counts with
SNOWG LOBES | 18 20 22 24

Neutrino average energy [MeV]

o
(e}

—_
w
=}




MULTI-MESSENGER SIGNALS:

GRAVITATIONAL WAVES

Pick out dominant GW
frequency by
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Modeled GW emission using
eigenfrequencies of PNS

(Morozova et al (2018)



MULTI-MESSENGER SIGNALS:
GRAVITATIONAL WAVES
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MULTI-MESSENGER SIGNALS:

GRAVITATIONAL WAVES
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MULTI-MESSENGER SIGNALS:

GRAVITATIONAL WAVES
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MULTI-MESSENGER SIGNALS:

COMBINED ANALYSIS
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WHAT'S NEXT?

Have predictions for large range of CCSN (2-120 Mo):
Neutrino signals
Gravitational wave signals
Light curves
Remnant object mass distributions
We are also investigating (Ask me later!):
Failed explosions
Effects of neutrino flavor mixing
Sensitivity to nuclear EOS
Still to do:
Sensitivities to metallicity, rotation, magnetic fields, binarity, etc

Nucleosynthesis and implication for GCE



THANK YOU!






MULTI-MESSENGER SIGNALS:

NEUTRINOS
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MULTI-MESSENGER SIGNALS:

GRAVITATIONAL WAVES
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MULTI-MESSENGER SIGNALS:

COMBINED ANALYSIS
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FURTHER COMPLICATIONS:
NEUTRINO FLAVOR MIXING
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FURTHER COMPLICATIONS:
NEUTRINO FLAVOR MIXING
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However, we still have another
window: gravitational waves

Can break the degeneracy with
correlated neutrino &
gravitational wave signals

**Considering only MSW mixing in stellar envelope

Warren, Couch & O'Connor (in prep)



What can we learn from multi-messenger signals?

EOS SENSITIVITI

Want to explore sensitivity of
CCSNe to uncertainties in

the nuclear EOS

Several parameters are
constrained by experiment
and “characterize” EOS

Saturation density ng
Incompressibility Kg

Symmetry energy J
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What can we learn from multi-messenger signals?

—OS SENSITIVITIES

Peak Electron Neutrino Luminosity
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What can we learn from multi-messenger signals?

—OS SENSITIVITIES
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