

Gravitational wave astrophysics and cosmology with (DES)* galaxies

Antonella Palmese Midwest workshop on SN and transients @ KICP 25 February 2019

In collaboration with: M. Soares-Santos, J. Annis, C. Conselice, Z. Doctor, W. Farr, M. Fishbach, J. Gair, D. Holz, O. Lahav, H. Lin, W. Hartley, F. Tarsitano, & many more (DES & LVC)

Introduction

- DECam currently one of the best instrument for GW optical follow up in the Southern hemisphere
- 4 DES studies on GW170817 → DECam analysis of host galaxy
- By studying the host galaxy → binary formation
- Synergy between GW experiments and galaxy surveys also allows cosmology
- First measurement of H₀ from a dark siren using GW170814 (DES+LVC)
- Outline:
 - ★ What we learned from DES/DECam galaxies
 - ★ Science with future surveys (DELVE, DESI, LSST)

DECam

- 3 sq deg FOV, 570 Mpix optical CCD camera CTIO Blanco 4-m telescope (Chile)
- First/last light: 12-12-12 / 01-08-19

Wide: 5000 sq deg grizY

SNe: 30 sq deg SNe survey

Neutrinos: followup of Icecube events

<u>GW</u>: followup of LIGO/Virgo events

Public data

https://des.ncsa.illinois.edu/home

- ★ DR1 (Y3) 400M objects (r~24)
- ★ Value added Y1 catalogs
- ★ Y3 Supernovae

The Dark Energy Survey

HOME

G297595 LIGO DATA DES DATA PLOTS PROCESSING CANDIDAT

DECam

- 3 sq deg FOV, 570 Mpix optical CC CTIO Blanco 4-m telescope in Chile
- First/last light: 12-12-12 / 01-08-19

DES programs

Wide: 5000 sq deg grizY

SNe: 30 sq deg SNe survey

Neutrinos: followup of Icecube events

<u>GW</u>: followup of LIGO/Virgo events

DECam follow-up continues

Public data

https://des.ncsa.illinois.edu/home

- ★ DR1 (Y3) 400M objects (r~24)
- ★ Value added Y1 catalogs
- ★ Supernovae

Trigger G297595

10:30:43 Aug 14, 2017 UTC FAR: 30211626.4 Days

LALINFERENCE

BAYESTAR

LIGO Probability of Detection (in our hexes): 0.843012

DES X LIGO Probability of Detection: 0.182337

Trigger Type: CBC

Strategy: BH

Part I

Bright events

Astrophysics

Cosmology

GW170817 host galaxy - SED analysis

- Spectral (6dF) and photometric (DECam+VHS)
 SED fit
- $M^*=(3.8 \pm 0.20) \times 10^{10} M_{\odot}$, Age~11 Gyr
- Weak ionized gas emission lines by AGN
- Pixel SED fit, also allowing late SF bursts
- No evidence for recent star formation
- Surprising for isolated binary scenario

Stellar mass map from pixel SED fit

Palmese et al. (2017) <u>arxiv:1710.06748</u>

Expected rate in early type galaxies

Assuming BNSs are formed as isolated binaries

$$R_{NSM}(t) = lpha R_{NS}(t')$$
 Fraction of NS in BNS Vangioni et al. 2016 $t' = t - \Delta t_{NSM}$ Delay time $t' = t - \Delta t_{NSM}$ Fraction of NS in BNS Vangioni et al. 2016 $t' = t - \Delta t_{NSM}$

Assume SMF + cosmic SFR density:

$$R_{NSM}^{\text{early}} = 23_{-14}^{+2} \text{ yr}^{-1} \text{Gpc}^{-3}; \quad R_{NSM}^{\text{all}} \approx 270 \text{ yr}^{-1} \text{Gpc}^{-3}$$

Expected observable events for BNS in LIGO 01+02
Early type galaxies: 0.04
All galaxies: ~0.5

Observing a merger of isolated binary in this type of galaxy unlikely

NGC 4993: a normal elliptical?

- DECam ugrizY + HST F606W + VHS + WISE
- Extensive morphology study
- A disturbed galaxy (extended stellar halo, some asymmetry, 2 superimposed stellar populations...)

NGC 4993: a shell galaxy

Residual images from DECam and HST

At least 4 shell structures

HST: inner shell on which the transient seem to lie and dust lanes

Signs of a recent galaxy merger

NGC 4993: a recent galaxy merger

Shells are arcs of enhanced surface brightness corresponding to higher stellar densities, relics of a galaxy merger

Galaxy merger and environment

Distribution of shells can constrain the time of the galaxy merger

Survival time of the innermost shell: tmer<tdyn< 200 Myr

- ★ Unlikely the binary formed as isolated binary
- ★ Position of the transient lies on a shell
- ★ Galaxy merging activity may relate sGRB hosts

- Suggest that galaxy mergers can boost the BNS formation/merging by boosting dynamical interactions
- More likely to be observed in galaxy groups
- For this group:

 $t_{\rm cr} \sim R_v/(\sqrt{2.5}\sigma_v) \sim 1.6 \,\rm Gyr$

Part I

Bright events

Astrophysics

Cosmology

Standard sirens

Similar to SN cosmology:

Done for GW170817 in Abbott et al. 2017

Z

EM experiment - host galaxy redshift

Part II

Dark events

Astrophysics

Cosmology

Dark sirens

Standard sirens with no EM counterpart

Dark sirens

Standard sirens with no EM counterpart

- Factor ~10 more BBH events
- May miss some EM counterparts to BNS
- Further away can do more than H₀

Proposed by Schutz in 1986

LIGO data (source position & distance)

Bayes' theorem:

DES data (galaxies' positions & redshifts)

$$p(H_0|d_{\rm GW}, d_{\rm EM}) \propto p(d_{\rm GW}, d_{\rm EM}|H_0)p(H_0)$$

- Source **position assumption**: it lives in galaxies i
- Marginalize over all galaxies

$$p(H_0|d_{\text{GW}}, d_{\text{EM}}) \propto \frac{p(H_0)}{\beta(H_0)} \sum_i w_i \int dz_i \, p(d_{\text{GW}}|d_L(z_i, H_0), \Omega_i) \, p(d_{\text{EM}}|z_i) \, \frac{r^2(z_i)}{H(z_i)}$$

Selection effects

LIGO/Virgo

DES

Chen, Fishbach & Holz (2018)

Simulations

- · Single events: posterior expected to have peaks corresponding to large scale structure along the los
- Peaks are broadened and blended if d or z uncertainty increases.
- Converge to the input value of H_0 from combining enough events

Simulations

- are broadened and blended if d or z uncertainty increases.
- Converge to the input value of H_0 from combining enough events

GW170814: the golden event (for DES)

- LIGO+Virgo: 90% probability in 60 sq deg
- 90%+ covered by DES-GW follow up (see Zhoeyr Doctor talk tomorrow)
- Falls in the DES footprint

GW170814: the golden event (for DES)

- Define a complete volume limited galaxy sample down to 4x108 Msun (77% of total stellar mass) using Year 3 data
- ~77,000 galaxies

Results

 $H_0 = 75.2^{+39.5}_{-32.4} \text{ km s}^{-1} \text{ Mpc}^{-1}$

DES & LVC (2019) arxiv: 1901.01540

(Near) future galaxy surveys

Astrophysics

Cosmology

DESI

- ★ 5000 fibers spectrograph at Kitt Peak (AZ)
- ⋆ 5 years, first light 2019

The Bright Galaxy Survey (BGS)

- ★ 14,000 sq deg
- ★ Magnitude limited survey (r=19.5) out to z~0.4 (median 0.2)
- ⋆ 10M galaxies
- * Precision $\sigma_z \sim 0.0005$

BLISS+DELVE PI: Alex Drlica-Wagner

Conclusions

- Synergies between GW experiments and large galaxy surveys allow studies of both the formation of GW sources and cosmological parameter inference, other than transient discovery
- Lessons from DES+LIGO/Virgo:
 - Indication for BNS formation different from isolated binary scenario
 - First measurement of Ho with GW170814+DES galaxies
 - Proof of concept and identification of sources of systematics/ansatz

Future work

- Systematics of dark sirens
- Similar method for dark events host galaxy properties
- DESI and LSST GW science
- Full sky galaxy catalog for dark siren cosmology & follow-up (DES+BLISS+public catalogs)

Back-up slides

Shell galaxies in DES Year 1 Original Residual image

~15% of selected early-type galaxies present shells
Public morphological catalog:

<u>Tarsitano & DES 2018: https://arxiv.org/abs/1807.10767</u>

Alternative interpretation

No strong conclusions about BNS formation from one event, but the coincidence of a recent merger in a galaxy for which a BNS event was otherwise improbable is compelling

- Belczynski et al. 2018 follows similar motivation to suggest alternative formation scenario
- 50% of mass formed by ~11 Gyr ago -> median delay timescale

Blanchard et al. 2017

Results from simulations

 4-5% statistical precision with DES-like data and ~100 GW170814-like events

Host galaxy - Comparison to sGRB hosts

- Asymmetry and concentration consistent with early-type galaxies but unusual for sGRB hosts
- Clear major galaxy mergers are unusual amongst sGRB hosts
- Other sGRBs are at cosmological distances and thus are mostly undergoing extensive galaxy formation through star formation or merging
- Common feature: merging activity
- Minor merger such that the bulk morphology is still elliptical

Is the BNS formation or evolution related to a recent galaxy merger history?

Host galaxy - pCMD

- Well represented by a pixel "main sequence" that is bluer at fainter levels, typical of early—type galaxy color gradients
- Supports scenario in which BNS is not related to local SF events

Evidence for a recent dry minor galaxy merger (no SF)

A star cluster?

- r-band absolute magnitude from a 4 sq.arcsec region around the transient location in the galaxysubtracted image is -10.65
- Dynamical interactions are more likely within star clusters and in galaxy nucleus (higher stellar density in ellipticals), where infalling stars may have passed
 Cannot exclude kicks