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Era of 3D CCSN Explosions
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Figure 4. Volume rendering of the entropy distribution in the full 3D unconstrained high-resolution simulation s27FH at 283ms after core bounce. The cyan
surface corresponds to the shock front and is at a specific entropy of 10kB baryon-1. The yellow regions are at specific entropies of ⇠ 16kB baryon-1 and the red
regions are at ⇠ 20kB baryon-1. They correspond to strongly neutrino-heated bubbles of hot gas that expand, pushing the shock outward locally and globally.
This results in a complicated shock morphology that is asymmetric on large scale and on small scale. This figure was produced using yt (Turk et al. 2011).

All four models exhibit very similar average neutrino en-
ergies, the expected hierarchy of neutrino energies, h✏⌫ei <
h✏⌫̄ei < h✏⌫µ/⌧

i, and spectral hardening as a function of time.
The large average energies of the ⌫µ/⌧ , relative to the aver-
age energies predicted by other groups (e.g. Müller & Janka
2014), are due to our neglect of inelastic neutrino scattering.
This is unlikely to have a large effect on heating in the gain re-
gion, since µ and ⌧ neutrinos do not effectively deposit their
energy there. It has been shown that inelastic scattering of
heavy flavored neutrinos near the electron neutrino sphere can
modestly increase the average energies of electron flavored

neutrinos (Müller et al. 2012b), but the absence of inelastic
scattering is unlikely to make a qualitative difference to the
outcome of our simulations. Tamborra et al. (2014) have also
investigated 3D models of CCSNe using the s27 progenitor.
Our ⌫e and ⌫̄e luminosities and average energies are within
10% of those found by Tamborra et al. (2014), but our simu-
lations show a different hierarchy of luminosities than theirs,
with L⌫e < L⌫̄e . Our ⌫µ/⌧ luminosities are also about 25%
lower than those reported in Tamborra et al. (2014).

Additionally, Tamborra et al. (2014) found that the lepton
flux is asymmetric about the center of mass with a strong

Roberts et al. (2016)

  

Figure 2

Successful 3D explosion models of the Garching group obtained in self-consistent neutrino-hydrodynamics simulations with
the Prometheus-Vertex code. The panels show isoentropy surfaces of neutrino-heated, buoyant matter for a 9.6M� star
(top left; 97), a 20M� progenitor (top right; 98), and a rotating 15M� model (bottom left; 122). The supernova shock is
visible as a blue, enveloping surface. The average shock radii as functions of time are displayed in the lower right panel.

connected to the numerical grid and by technical features in the (simplified) modeling

setups. Future, well-resolved and fully self-consistent 3D simulations for larger sets of pro-

genitors and realistic pre-collapse perturbations in codes with low intrinsic noise level are

needed to confirm our expectation that the cores of collapsing stars can evolve through

SASI-dominated episodes at least transiently.

14 Janka, Melson, & Summa

Janka et al. (2016)
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Figure 4. Specific entropy (kB baryon�1) at 200, 300, and 400 ms with 400-km scale bars in each panel. Column a (left): Volume rendering for C15-3D
using a fixed transfer function, highlighting rising plumes. Column b (center): Polar slice through C15-3D, aligned with Column a. In upper two panels (200 and
300 ms), the 180� �-shift between upper and lower halves is exaggerated by the 8.5� zone at the pole. 400-ms panel shows effect of transition to �-averaging at
pole. Column c (right): Entropy in a polar slice through C15-2D with color scale matching Column b at each epoch.

Lentz et al. (2016)

O’Connor & SMC (2018b)
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Figure 10. Same as Figure 9, but for the 10-M� model. Note that the entropy scales are the same as in Figure 9, but that snapshot
times are di↵erent. The physical scales are 200 km (left) and 2700 km (right).

Figure 11. Same as Figure 9, but for the 11-M� model. Note that the entropy scales are the same as in Figure 9, but that snapshot
times are di↵erent. The physical scales are 420 km (left) and 4000 km (right).

Figure 12. Same as Figure 9, but for the 12-M� model. Note that the entropy scales are the same as in Figure 9, but that snapshot
times are di↵erent. The physical scales are 436 km (left) and 2500 km (right).
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Burrows et al. (2019)



Quest for Explosion Mechanism
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Multiphysics Challenges

3D Magnetohydrodynamics

General Relativity

Microphysics 
(Nuclear EOS, 𝞶-interactions, 

nuclear kinetics)

Boltzmann 𝞶-transport

Fully-coupled! All four Forces: 
Gravity 

EM 
Weak 
Strong

Need 21st c. tools: 
• Modern microphysics  
• Cutting-edge numerical algorithms 
• Petascale computers (exascale?) 
• Sophisticated software 

infrastructure (and open-source!)



High-Fidelity Explosions in 2D
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Bruenn et al. (2016)
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inhibition of these accretion streams will be reflected in a
slower growth of the explosion energy, as seen in B20-WH07.
The second is that the morphology of the explosion and the
topology of these accretion streams, and therefore the final
explosion energy, can be affected randomly from model to
model by the stochastic nature of the fluid instabilities that
develop prior to the explosion. Similar to the point made by
Scheck et al. (2006) in connection with the bimodality of
neutron star velocities, the final explosion energy of a given 2D
model can be subject to random variations due to the stochastic
nature of the fluid flow in the gain region immediately prior to
the onset of the explosion. The extent to which this potential
variability carries over to 3D simulations remains to be
determined.

3.5. Proto-NS Properties

The proto-NS baryonic rest masses, M ,bary are plotted as a
function of time in Figure 25, upper panel, and are 1.461,
1.676, 1.806, and 1.898 M: (Table 2), respectively, for B12-
WH07, B15-WH07, B20-WH07, and B25-WH07 at the time of
this report, where we have defined the proto-NS as the matter
with densities above 1011 g cm 3- . The baryonic masses can be
translated to gravitational masses, M ,grav with the relation

M M M
M

M
0.075 , 17grav bary

grav
2

( )= - :
:

⎛
⎝⎜

⎞
⎠⎟

with the constant obtained by fitting results using a wide range
of EoSs by Timmes et al. (1996). This gives Mgrav of 1.345,

Figure 24. Profiles of entropy (upper portion of frames) and radial velocity (lower portion of frames) for all four models at 250 ms after bounce. Plotted as in Figure 3
with the entropy scale extended.
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The Astrophysical Journal, 818:123 (39pp), 2016 February 20 Bruenn et al.

Due to the assumption of axisymmetry, large plumes
preferentially grow along the direction of the artificial
symmetry axis (see also Hanke et al. 2012; Takiwaki et al.
2012; Couch 2013).

According to Fernández et al. (2014), SASI-dominated
explosion models are characterized by the interplay of shock
sloshing motions and the formation of large-scale, high-entropy
structures. The authors conclude that a SASI-driven explosion
develops if these bubbles are able to survive during several

SASI oscillation periods. The dominance of large-scale bubbles
seeded by SASI sloshing motions compared to small-scale
bubbles driven by convection, as indicated by the snapshots in
Figure 8, clearly suggests that the post-shock flow dynamics in
our simulations are governed by the SASI, while convective
instabilities play a more secondary role. This interpretation is
further supported by an analysis of the energy spectrum E(l),
which considers the decomposition of the azimuthal velocity vθ
at a given radius (weighted by the square root of the density)

Figure 8. Snapshots of radial velocity (left halves of the panels) and entropy per baryon (right halves of the panels) for the four simulations of Model Set I at the time
of explosion (defined by the time when the ratio τadv/τheat reaches unity).
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The Astrophysical Journal, 825:6 (24pp), 2016 July 1 Summa et al.

Summa et al. (2016)

Exploding Core-Collapse Supernovae 9

Figure 6. Ye (left) and specific entropy (kB/nucleon, right) snapshots of the four exploding progenitors at 100, 300 and 1700 milliseconds
post-bounce. As early as 100 ms post-bounce, we see nascent convection in the proto-neutron star. At late times, all explosions are very
asymmetric. We find that models with multiple wide plumes have greater explosion energies than those localized in a single hemisphere.
Because the two-dimensional nature of the simulation may artificially promote axial anisotropies, we presume that 3-D simulations will
produce more isotropic explosions with consequently greater explosion energies.

MNRAS 000, 1–18 (2018)
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Why Do 2D & 3D Explode?

• Proto-neutron star convection => 
enhances neutrino luminosities 

• Gain layer convection => increases 
matter dwell times 

• Standing Accretion Shock Instability 
=> expands gain region 

• Strong turbulence => pushes shock 
out/heats gain region
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Figure 13. Pseudo-color slices of entropy at four postbounce times for s27 fheat 1.05 3D. The colormap and limits are indicated on the left and kept fixed for each
time. Convection is already strong by 100 ms, as is indicated in Figures 11 & 12. As explosion sets in (right two panels), the convection becomes volume-filling
and large, high-entropy bubbles emerge that push the shock outward. The explosion begins in an asymmetrical fashion (right-most panel). The development of
convection in our simulations is very similar to that of Ott et al. (2013).
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Figure 14. Turbulent kinetic energy spectra, as measured by the non-radial
component of the velocity. The top panel shows 2D and 3D spectra for s15
and the bottom panel displays the same for s27. The E` are averaged over a
10 km-wide shell, centered on a radius of 125 km, and over 10 ms, centered at
150 ms postbounce. In all cases, 2D simulations result in much greater kinetic
energy density on large scales than 3D. Kinetic energy on large scales has
been suggested to be conducive to explosion (Hanke et al. 2012).

et al. 2013). Turbulent stresses can aid shock expansion in
multidimensional simulations of CCSNe (Murphy et al. 2013).
The presence of strong turbulent motions behind the forward
shock during the explosion phase may even effect collective
neutrino flavor oscillations (Lund & Kneller 2013). Based on
the global CCSN turbulence model developed by Murphy &
Meakin (2011), Murphy et al. (2013) argue that the turbulence
in neutrino-powered CCSNe explosions is primarily the result
of neutrino-driven convection. Here, rather than focus on the

primary driver of turbulence in our simulations, we address the
differences in the development of turbulence between 2D and
3D.

Following a number of previous studies, we examine tur-
bulent motion by decomposing the non-radial component of
the kinetic energy density in terms of spherical harmonics
(e.g., Hanke et al. 2012; Dolence et al. 2013; Couch 2013a;
Fernández et al. 2013). We define coefficients,

✏`m =

I p
⇢(✓, �)vt(✓, �)Y m

` (✓,�)d⌦, (13)

where the transverse velocity magnitude is vt = [v2
✓ + v2

�]1/2.
The non-radial kinetic energy density as a function of ` is then

E` =
X̀

m=�`

✏2`m [erg cm�3]. (14)

In Figure 14, we show the E` spectra for s15 (top) and s27
(bottom) in both 2D and 3D. The spectra are computed in a 10
km-wide spherical shell centered on a radius of 125 km and
at a postbounce time of 150 ms. This time and radius were
chosen to coincide with the initial development of strong non-
radial motion yet prior to onset of significant shock expansion
or contraction (see Figs. 10 & 11). Immediately apparent
is that 2D simulations have much greater turbulent kinetic
energy on large scales (small `) than 3D. This is the case
even when comparing the 2D fheat = 0.95 cases with the
3D fheat = 1.05 cases. Similar behavior is found in other
comparisons of turbulence in 2D and 3D (Hanke et al. 2012;
Dolence et al. 2013; Couch 2013a). These studies also found
that non-radial kinetic energy on large scales correlated with
vigor of explosion. Hanke et al. (2012) even suggest that non-
radial kinetic energy on large scales, by significantly increasing
matter dwell times in the gain region, could be key to the
success of the neutrino mechanism. Our results also support
this conclusion; the closer a model is to explosion, the larger
the turbulent kinetic energy on large scales.

It is well-known that turbulence in 2D exhibits very dif-
ferent behavior than in 3D. The most significant difference,
particularly for the present discussion, is the so-called “inverse
energy cascade” in 2D. According to Kolmogorov’s theory of
turbulence, turbulent energy is injected on large scales and sub-
sequently is transfered via the turbulent cascade to small scales
(Kolmogorov 1941). In 2D, turbulent energy is still injected
at the large, driving scale, but from there cascades to large
scales instead. Enstrophy, the integrated squared-vorticity,

17
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Cooling PNS conv.
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Turbulence in 
CCSNe
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• Neutrino heating => buoyant 
convection 

• Convective plumes “stir” the 
post-shock region 

• Turbulence exerts significant 
stress (i.e., pressure) 

• Turbulent energy dissipates to 
thermal (Mabanta & Murphy 
2018)

Murphy et al. (2013); 
SMC & C. Ott (2015)

Radice et al. (2016)



Does the neutrino 
mechanism work in 

3D?
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3D FLASH-M1 Sims

!9

O’Connor & SMC (2018b)

Choice of progenitor model!

😞



“Low-mass” Stars Explode
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Figure 10. Same as Figure 9, but for the 10-M� model. Note that the entropy scales are the same as in Figure 9, but that snapshot
times are di↵erent. The physical scales are 200 km (left) and 2700 km (right).

Figure 11. Same as Figure 9, but for the 11-M� model. Note that the entropy scales are the same as in Figure 9, but that snapshot
times are di↵erent. The physical scales are 420 km (left) and 4000 km (right).

Figure 12. Same as Figure 9, but for the 12-M� model. Note that the entropy scales are the same as in Figure 9, but that snapshot
times are di↵erent. The physical scales are 436 km (left) and 2500 km (right).

MNRAS 000, 000–000 (0000)

Burrows et al. (2019)
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Figure 1. The mass-density (⇢, in g cm�3) versus interior mass (in units of M�) for various representative progenitor models from
Sukhbold et al. (2016). The profiles for the 9-, 10-, 11-, 12-, and 13-M� models are highlighted in color. Comparisons between these and
the other profiles (in gray) up to 80-M� put this lower-mass subclass into the larger context of progenitor initial models. Note that the
13-M� model is distinct from the others highlighted in this low-mass progenitor study. See the text for a discussion.
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Figure 2. The solid-angle-weighted average shock wave radius (in kilometers) versus time after bounce (in seconds) for the 9-, 10-, 11-,
12-, and 13-M� models of this study in 3D (thick) and 2D (thin). All the 3D and 2D models, except the 13-M� model, explode. Shown
are the radii until 0.55 seconds after bounce, though the runs were frequently carried out further (see Table 1). The 9-M� and 11-M�
models explode within ⇠100 milliseconds of bounce, the 12-M� progenitor requires ⇠40 milliseconds longer, while the 10-M� model is
clearly exploding by ⇠0.3 and 0.45 seconds in 3D and 2D, respectively. Generally, the 3D models explode slightly earlier than the 2D
models, though for the 12-M� progenitor the 3D and 2D models are launched at roughly the same time. We note that the 13-M� model
in this progenitor model suite not only does not explode in either 2D or 3D, but that it has a muted silicon/oxygen interface jump in
density (and entropy) relative to that of the others (see Figure 1) that resides further out in interior mass. These factors seem to have
an impact on the “explodability” of that core. Moreover, in Burrows et al. (2018) and Vartanyan et al. (2018), the 2D 12-M� model,
using default physics, did not explode, but this initial model was from a di↵erent progenitor suite (Woosley & Heger 2007b) for which
the 12-M� model does not have as pronounced a silicon/oxygen density discontinuity. See the text for a discussion of these trends.

MNRAS 000, 000–000 (0000)
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Figure 4. Entropy s in units of kb/nucleon on 2D slices at the end of the simulations for models z9.6 (top left), s11.8 (top right), z12 (middle left), s12.5
(middle right), he3 (bottom left) and he3.5 (bottom right). The axis of the spherical polar grid is aligned with the x-axis of the plots. Note that there is no
visible alignment of the flow structures with the axis of the spherical polar grid in models s11.8, s12.5, he3, and he3.5. The explosion are predominantly
unipolar, with the exception of z12, and to some degree z9.6 at early times.

MNRAS 000, 1–18 (0000)
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Figure 3. Diagnostic explosion energy Ediag (top) and maximum shock ra-
dius rsh,max as a function of time for all of the seven low-mass models.

and in the more recent simulations, we include the modification of
the neutrino-nucleon scattering opacity due to nucleon correlations
following Horowitz et al. (2017). Model he3.0 also includes weak
magnetism corrections following Horowitz (2002).

At high densities, we use the nuclear equation of state of
Lattimer & Swesty (1991) with a bulk incompressibility of K =
220 MeV, supplemented by a low-density equation of state for nu-
clei, nucleons, and lepton and photon radiation. The flashing treat-
ment of Rampp & Janka (2002) is used for nuclear reactions below
a temperature of 0.5 MeV; at higher temperatures, nuclear statisti-
cal equilibrium is assumed.

4 RESULTS

4.1 Shock Propagation and Explosion Energetics

The evolution of the maximum shock radius and the diagnostic ex-
plosion energy Eexpl (defined as in Müller et al. 2017a) is shown
in Figure 3. All the models in this study undergo neutrino-driven
shock revival and evolve into explosion with large-scale unipolar
or bipolar asymmetries (Figure 4). Important explosion and rem-
nant properties are summarised in Table 2. With the exception of
model s12.5, the shock is revived at rather early post-bounce times
between 100 ms and 200 ms. This is the result of the early infall
of the O shell and the concomitant drop of the mass accretion rate
Ṁacc (top panel of Figure 5).

Shock propagation is fastest for models z9.6 and he2.8, which

have very thin O and C/O shells and hence exhibit the most rapid
drop of the accretion rate. Residual accretion is thus quickly over-
whelmed by the developing neutrino-heated outflows. Without the
supply of fresh matter at the gain radius, the mass outflow rate Ṁout

also declines strongly after shock revival, and the explosion en-
ergy therefore essentially plateaus at a low value as can be seen for
model he2.8. The diagnostic energy at the end of these two simula-
tions is only 1.32 ⇥ 1050 erg for model z9.6 and 1.12 ⇥ 1050 erg for
model he2.8.

Among the other models, z12 exhibits the lowest accretion
rates, but the accretion phase is much more drawn-out than for
z9.6 and he2.8. This also allows the model to maintain a higher
outflow rate of neutrino-heated matter, and the explosion energy
Eexpl, which initially grows at a similar rate as in z9.6 and he2.8,
plateaus later. By the end of the simulation at 1.847 s, Eexpl has al-
ready reached a value 4.1⇥1050 erg; although the explosion energy
has not finally saturated yet, its rate of increase has already slowed
considerably.

Model he3.5 also shows first signs of the explosion energy
converging towards its asymptotic value. While shock revival oc-
curs somewhat later at a post-bounce time of 200 ms due to a later
infall of the O shell, the accretion rate also drops quickly there-
after, approaching similarly low values as for z12 after ⇠700 ms.
At the end of the simulation, the growth of the explosion energy
has slowed down considerably, and we obtain a final value of
Eexpl = 3.66 ⇥ 1050 erg.

Models s11.8 and he3.0 evolve in a remarkably similar way
until about ⇠700 ms in terms of their mass accretion rate, mass out-
flow rate, shock propagation, and explosion energy. At that point
the models part company with the growth of the explosion energy
in model s11.8 slowing down. It is not clear whether this already
indicates that the explosion energy in s11.8 is nearing saturation.
Although this model shows a stronger decline of Ṁacc than he3.5
at late times, the mass outflow rate Ṁout is still similar, suggest-
ing that the slower growth of the explosion energy is not due to a
lack of supply of fresh matter at the gain region. The slower growth
rate is instead due to a lower average total enthalpy h̄tot in the out-
flows (Figure 6), which is the main determining factor for Eexpl

along with the mass outflow rate (Müller 2015). In model s11.8, h̄tot

drops significantly below the typical values of 6-9 MeV/baryon for
the other models with sustained accretion. In model he2.8, a simi-
lar drop marks the transition from the initial explosion phase to the
incipient neutrino-driven wind phase, but a close inspection of the
multi-dimensional flow dynamics in model s11.8 points towards a
di↵erent reason for the drop in h̄tot. Figure 7 shows that this drop co-
incides with a significant realignment of the downflow and outflow
geometry. Initially, the model is characterised by a strong outflow
in the 3 o’clock to 6 o’clock direction (top left panel in Figure 7,
798 ms after bounce). During the next few hundreds of millisec-
onds, a downflow from the 9 o’clock direction intrudes into and
mixes with this outflow (top right panel in Figure 7, 911 ms). Hence
much of the ejected neutrino-heated material is diluted with cold
matter from the downflows, which lowers the average energy and
enthalpy of the outflow. Later on (bottom row in Figure 7, 1045 ms
and 1094 ms), a new outflow of high-entropy material develops into
the 7 o’clock direction. Due to the limited simulation time, we can-
not exclude that this new outflow grows further and reinvigorates
the growth of the explosion energy. The reorientation of the outflow
bears some resemblance to the phenomenon of outflow quenching
in 2D simulations (Müller 2015), albeit in less dramatic form. It
suggests that the energetics of 3D models after shock revival can
still exhibit some degree of stochasticity and is not determined by

MNRAS 000, 1–18 (0000)
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High-mass Explosions
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Figure 1. Mean (solid) shock radius for models C15-3D (green), C15-2D
(black), and C15-1D (red) plotted versus time. Minima and maxima plotted
with dashed lines.
ology and initial conditions. An overview of the simulations
is presented in Section 3 with a focus on the differences be-
tween the 2D and 3D simulations in Section 4. We discuss
our results in context in Section 5 followed by a summary in
Section 6.

2. NUMERICAL METHODS AND INPUTS

Initial conditions are taken from the 15 M� pre-supernova
progenitor of Woosley & Heger (2007). The inner region
(10,700 km; 2.32 M�) is remapped onto 540 radial shells on
logarithmic radial grid (�r/r) modified to track density gra-
dients. Multi-dimensional simulations were initialized from
a 1D simulation at 1.3 ms after bounce by applying a 0.1%
random density perturbation over radii 10–30 km, mimicking
perturbations seen in simulations evolved through bounce in
2D. The angular grid of the 3D simulation (C15-3D) was ini-
tialized with a 180-zone (�� = 2�) �-grid and a 180-zone ✓-
grid equally spaced in µ ⌘ cos ✓, i.e., equal solid angle. This
✓-grid widens the pole-adjacent zones (�` = Rsph�� sin ✓)
and therefore the time step . We evolve in spherical symmetry
inside Rsph = 6 km until 45 ms after bounce (when prompt
convection fades) thereafter setting Rsph = 8 km. With this
grid, the pole-most zone is ⇡8.5� wide resulting in a mini-
mum length and time step ⇡4⇥ larger than for a uniform 2� ✓-
grid (e.g., Hanke et al. 2013). 300 ms after bounce, the ✓-grid
was remapped in the 10 ✓-zones closest to each pole (⇡27�)
to uniform spacing (�✓ = 2.7�) and the �-sweep at the pole
was replaced by averaging, yielding similar time steps. The
axisymmetric simulation (C15-2D) uses 270 uniform ✓-zones
(�✓ = 2/3�).

These are the third series of CHIMERA simulations (Series-
C) and are substantially similar to the Series-B simulations
(Bruenn et al. 2013, 2014, hereafter B2013 and B2014). A
more extensive description of CHIMERA can be found in
Bruenn et al. (2014). The included microphysics are the
same as for the Series-B models including the spherical GR
terms in the gravity and transport. We solve the multi-group
flux-limited diffusion equations for all three flavors of neu-
trinos and anti-neutrinos with four coupled species: ⌫e, ⌫̄e,
⌫µ⌧ = {⌫µ, ⌫⌧}, ⌫̄µ⌧ = {⌫̄µ, ⌫̄⌧}, using 20 logarithmically
spaced energy groups ↵✏ = 4–250 MeV, where ↵ is the lapse
function and ✏ the comoving-frame group-center energy, in
the ray-by-ray approximation. The neutrino–matter interac-
tions used are the full set of B2014. We utilize the Lattimer
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Figure 2. Panel a: Diagnostic energy E+, and Panel b: Mass of shocked
cavity (solid), gain region (dashed), and unbound region (dash-dotted) plotted
in colors of Figure 1. See text and B2014 for definitions.
& Swesty (1991) EoS (incompressibility K = 220 MeV) for
⇢ > 1011 g cm�3 and an enhanced version of the Cooper-
stein (1985) EoS for ⇢ < 1011 g cm�3, and in outer regions a
14-species ↵-network (Hix & Thielemann 1999).

Relative to the Series-B simulations (B2013; B2014), the
neutrino transport solver now corrects for frame differences
between shock-adjacent zones when computing the flux and
flux gradients (S. W. Bruenn et al., in prep.), permitting spher-
ically symmetric CHIMERA simulations to track the late shock
retreat of the reference simulation in Lentz et al. (2012). This
improvement has a modest effect on the shock stalling radius.

All times are given relative to core bounce. The proto-NS
is defined as the volume where ⇢ > 1011 g cm�3 and the
shocked ‘cavity’ is the volume between the proto-NS and the
shock.

3. SIMULATION OVERVIEW

After remapping from 1D, the multi-D simulations proceed
in similar fashion: convectively unstable regions left behind
by the shock progress through the Fe-core trigger prompt
convection inside the proto-NS, similar to the axisymmetric
Series-B simulations.

Neutrino heating establishes a heating region extending in-
ward from the shock to the gain surface, where net neutrino
heating transitions to net cooling. Starting at ⇡80 ms for both
multi-D simulations, heating at the base of the gain region
creates buoyantly unstable conditions, resulting in convective
plumes rising against the continuing inflow. Rising plumes
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Figure 4. Left: The shock radius (km) vs. time after bounce (in seconds) for the 2D (dashed, blue swath) and 3D (solid, green swath).
The colored-in regions indicate the range of the shock location, from minimum to maximum. The 3D simulation explodes slightly earlier.
At the end of our simulation, the shock achieves ⇠5000 km. The shock of the 3D model barely stalls in radius, while the shock for its
2D counterpart stalls for ⇠50 ms. We show in the inset a zoomed-in plot of the average shock radii at early times. The mean shock radii
for the 2D and 3D simulations have diverged by ⇠50 ms after bounce. Right: The first four spherical harmonic moments of the shock
radius as a function of time (in seconds) after bounce, normalized to the mean shock radius (the ` = 0 component). We take the norm
over all orders m and compare 3D (solid) to 2D (dashed). Up to ⇠70 ms after bounce, the ` = 2, 4 moments dominate, the former due to
the initial quadrupolar velocity perturbations imposed. From ⇠100 to ⇠200 ms, all reduced moments are comparable in magnitude. At
late times, the large scale, lower-` moments increase in significance. Up to ` = 11 (not shown), we find monotonically decreasing relative
moment magnitudes with increasing ` (and decreasing angular scale). We see a transition from small structures at early times to large
structures at later times. Up to explosion, the 3D simulation evinces much larger deviations from spherical symmetry. At late times,
however, the 2D simulation shows much larger asymmetries than the 3D simulation, indicated by the larger magnitude of the reduced
moments.

Figure 5. A Mollweide projection of the direction of the shock dipole as a function of time (in seconds) after bounce, color-coded. Early
on, the shock dipolar direction is changes sporadically before settling at late times to a randomly chosen axis. See Fig. 3 of Burrows
et al. (2012) for a comparison. Note that, in a 2D simulation, the dipole axis is required to lie along the z-axis; this is not the case in a
3D simulation.
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Figure 3. Evolution of the supernova shock. The thick lines show the angular
average of the shock radius for all four models considered in this work. For
the models s27FH, s27FL, and s27OH, the shaded regions show the minimum
and maximum radius of the shock at a given time. The dashed line shows the
mass accretion rate in s27OLjust outside the shock. The accretion rates for
the other three models are similar.

to increase over this period as the gain region starts to convect
in all simulations. Around 230ms after bounce, the average
shock radius begins to expand once again for all models. The
silicon-oxygen shell interface of the progenitor crosses the SN
shock at this time and the accretion rate drops significantly
(see Figure 3). This is in agreement with the 3D simulation of
Hanke et al. (2013) (see their Figure 2), however they did not
find an explosion in 3D. In fact, the evolution of the shock in
our model s27OH is quite similar to the shock radius evolu-
tion seen in Hanke et al. (2013).

Clearly, the evolution of the shock depends significantly on
both the resolution of the simulation and on whether or not
symmetries are imposed. As some of us found in the param-
eterized 3D simulations of Abdikamalov et al. (2015), lower
resolution appears to be more favorable for shock runaway for
simulations near the threshold of explosion (cf. Radice et al.
2016). At low resolution, imposing octant symmetry does not
have a large effect on the dynamics in the gain region. Both
s27FL and s27OL run away very quickly after the mass ac-
cretion rate falls off, with s27OL lagging by only a few mil-
liseconds. The high-resolution full 3D simulation s27FH runs
away more slowly than the low resolution simulations, but it
nonetheless is headed toward explosion, reaching a maximum
shock radius of more than 400km and an average shock radius
of ⇠315km at 370ms after core bounce. The minimum shock
radius of s27FH barely expands after 260 ms, which is quite
different from what is seen in the low resolution models that
experience rapid runaway in all directions. In the octant high-
resolution simulation s27OH, the shock begins to once again
recede soon after the passage of the silicon-oxygen shell in-
terface. It seems very likely that s27OH will result in a failed
SN, the two low resolution models are very likely to explode,
and s27FH seems to be clearly on the path to explosion.

In Figure 5, we show the decomposition of the shock front
into real spherical harmonic modes following the convention
in Burrows et al. (2012). We present the root-mean-square
amplitudes A` =

qP
m a2

`m (where a`,m is a coefficient of the
spherical harmonic decomposition of Rshock(✓,�)). The top
two panels show the evolutions of the ` = 1 (for full 3D simu-
lations) and ` = 2 shock modes (for all models). For the high-
resolution full-3D model s27FH, we show ` = 1 to ` = 5 in the
bottom panel. Considering an expansion in a real spherical
harmonic basis, our reflecting octant symmetry supresses odd

` modes, all negative azimuthal modes, and odd azimuthal
modes so that only the {` = 0,2, ...;m = 0,2,4, ...,`} modes
can be excited. This is in contrast to rotating octant symmetry
which allows for the modes {` = 0,2, ...;m = 0,±4,±8,±`}.
This is very different from axial symmetry (i.e. 2D simula-
tions), where all of the ` modes can exist but all m modes
except m = 0 are supressed and small scale motions are effec-
tively constrained to two dimensions.

All of the models experience increasing deviations from
spherical symmetry with increasing postbounce time. Al-
though the asymmetry grows with time, none of the models
appear to be dominated by the standing accretion shock insta-
bility (SASI; Blondin et al. 2003). There is a period in s27FH
from ⇠ 120ms to ⇠ 240ms where the ` = 1 mode oscillates
with constant frequency and grows, which may be indicative
of SASI activity. Nevertheless, these coherent oscillations are
destroyed once the Si shell interface is accreted through the
shock. Additionally, higher ` modes seem to grow at the same
rate. It is possible that the growth of low-order asymetries
without coherent oscillation is due to the SASI (which pre-
dicts longer period oscillations with increased neutrino heat-
ing; Yamasaki & Yamada 2007; Scheck et al. 2008), but it
appears more likely that this asymmetry is driven by convec-
tive instability in the postshock region (see Figure 4). The
SASI has been observed in some models that use the same
s27 progenitor model and hydrodynamics code, but include
only parameterized neutrino physics (Ott et al. 2013; Abdika-
malov et al. 2015). Strong SASI activity only occurred in
these models when the parameterized neutrino heating rate
was low and shock runaway did not occur. When the parame-
terized neutrino heating rate was higher, neutrino-driven con-
vection dominated and much longer period (⇠ 20ms) quasi-
oscillatory behavior was observed, similar to what we find
here.

In the two unconstrained full 3D simulations, the ` = 1 mode
begins to grow rapidly once shock runaway occurs. Com-
paring with Figure 1, we see that the late time asymmetry
is driven by large solid angle regions of high entropy outflow
and cold accretion streams that penetrate to near the protoneu-
tron star. Both ` = 1 and ` = 2 asymmetry increase during the
late shock expansion period of s27FH, although it appears that
the ` = 1 deformation is running away more rapidly. While
it is not completely clear that the shock is running away in
s27FH, this increasingly asymmetric expansion is similar to
what is seen in s27FL, which clearly experiences shock run-
away. There is also strong ` = 2 deformation in s27OL after
runaway. Although s27OH does not experience shock run-
away, it shows continued growth of the ` = 2 and exhibits
violent oscillations in the magnitude of the shock deforma-
tion. This may indicate that an ` = 2 SASI is occurring in this
model, although the flow is not well ordered and it is hard to
unambiguously determine the contribution of convection rel-
ative to SASI.

In Figure 6, we show spherically averaged properties of
the neutrino field at a radius of 450km for all four models.
Initially, there is a short period of oscillation in all quanti-
ties as the initial spherically symmetric model relaxes on our
3D Cartesian grid. These oscillations cease by ⇠40ms af-
ter bounce, and then the spatially-averaged neutrino evolution
is smooth. Until ⇠280ms after bounce, there are only small
differences between the neutrino luminosities in all models.
Deviations after this time are due to large variations in the ex-
tent and geometry of the postshock region and changes in the
accretion rate through the gain region (cf. Figures 1 and 3).
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quick drops in Ṁ . This model’s shock begins to deviate
substantially from spherical symmetry at ∼100 ms after
bounce and shock runaway ensues at around 200 ms.

(2) The 20Me and 27Me models have lower postbounce Ṁ ,
but their density profiles have a steep discontinuity at the
Si/Si–O shell interface9 (see Figure 1). In both models, it
is the drop in ram pressure due to the rapidly decreasing
Ṁ that triggers shock runaway ∼170–200 ms after
bounce.

(3) In the 12Me and 15Me models with their moderate Ṁ
and low Lν, the shock recedes to radii around 100 km.
The accretion rate gradually decreases, and so do the νe
and n̄e luminosities (center panels of Figure 2), while the
mean neutrino energies increase due to the increasing
compactness of the PNS (bottom right panel of Figure 3).
Both models experiences SASI. Eventually, more than
500 ms after bounce, shock runaway occurs in the 15Me
model. The 12Me model does not experience shock
runaway by the end of our simulation, but it still has the
potential to resume expansion at a later time.

O’Connor & Couch (2015) and Summa et al. (2016) found
similar evolutions to modes (2) and (3) in 2D simulations.
In Figure 3, we present diagnostics that help understand the

three evolution modes. Shock expansion is facilitated by increases
in thermal and turbulent pressure that offset the accretion ram
pressure (e.g., Couch & Ott 2015). Stronger neutrino heating
means more thermal pressure and stronger driving of turbu-
lence. The neutrino heating rate scales approximately as
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gaine e e e where Mgain and Rgain

are the mass contained in the gain region and the gain radius,
respectively (Janka 2001; Summa et al. 2016). Therefore, the
hierarchy of heating rates among the models mirrors their
luminosity hierarchy (Figure 3). Assuming that the majority of
the νe and n̄e luminosity is powered by accretion, one finds

µ a- + -˙ ˙ ( )Q M M R R Mheat PNS PNS
1 1 2
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gain, which implies greater
heating for a higher accretion rate and a more compact PNS for
a fixed gain region size and mass. Interestingly, at early times
(80–100ms), the heating efficiency h = +n n

-˙ ( )¯Q L Lnet
1

e e

(where Q̇net is the net heating rate; heating minus cooling)
is independent of progenitor. Since the mean neutrino energies
are very similar at early times, this implies that -M Rgain gain

2 is
similar for all of the models even though they have

Figure 2. Basic radiation-hydrodynamics results as a function of time after core bounce. The left panels depicts shock radius (top) and accretion rate Ṁ at 400 km
(bottom). The Ṁ curves terminate when the shock first exceeds that radius. The center panels show the electron neutrino luminosities (top) and electron antineutrino
and heavy-lepton neutrino luminosities (bottom), extracted at 450 km. We plot with thin lines the luminosities from the precursor 1D simulations until 40 ms after
bounce and with thick lines the luminosities in the 3D simulations started from the 1D simulations at 20 ms after bounce (38 ms for model s27WHW02). In the right
panels, we plot the mean electron neutrino (top) and electron antineutrino and heavy-lepton neutrino (bottom) energies. Note the strong dependence of the νe and n̄e
luminosities on the accretion rate. The mean energies exhibit much less Ṁ sensitivity and their overall increase is driven by the contraction of the PNS (see Figure 3).
Also note that the mean energies of νx neutrinos are overestimated by our simulations compared to others (see, for instance, Melson et al. 2015a), since we do not
include neutrino–nucleon inelastic scattering. Shock runaway occurs in s20WH07 and s27WHW02 when the Si/Si–O interface reaches the shock and Ṁ drops. No
such drop is necessary to revive s40WH07ʼs shock. Model s15WH07 begins shock expansion only after ∼500 ms and model s12WH07 does not experience shock
runaway by the end of its simulation.

9 The magnitude of the density jump is set by the scale of the jump in specific
entropy between shells (e.g., Sukhbold et al. 2017; Suwa et al. 2016).
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quick drops in Ṁ . This model’s shock begins to deviate
substantially from spherical symmetry at ∼100 ms after
bounce and shock runaway ensues at around 200 ms.

(2) The 20Me and 27Me models have lower postbounce Ṁ ,
but their density profiles have a steep discontinuity at the
Si/Si–O shell interface9 (see Figure 1). In both models, it
is the drop in ram pressure due to the rapidly decreasing
Ṁ that triggers shock runaway ∼170–200 ms after
bounce.

(3) In the 12Me and 15Me models with their moderate Ṁ
and low Lν, the shock recedes to radii around 100 km.
The accretion rate gradually decreases, and so do the νe
and n̄e luminosities (center panels of Figure 2), while the
mean neutrino energies increase due to the increasing
compactness of the PNS (bottom right panel of Figure 3).
Both models experiences SASI. Eventually, more than
500 ms after bounce, shock runaway occurs in the 15Me
model. The 12Me model does not experience shock
runaway by the end of our simulation, but it still has the
potential to resume expansion at a later time.

O’Connor & Couch (2015) and Summa et al. (2016) found
similar evolutions to modes (2) and (3) in 2D simulations.
In Figure 3, we present diagnostics that help understand the

three evolution modes. Shock expansion is facilitated by increases
in thermal and turbulent pressure that offset the accretion ram
pressure (e.g., Couch & Ott 2015). Stronger neutrino heating
means more thermal pressure and stronger driving of turbu-
lence. The neutrino heating rate scales approximately as
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respectively (Janka 2001; Summa et al. 2016). Therefore, the
hierarchy of heating rates among the models mirrors their
luminosity hierarchy (Figure 3). Assuming that the majority of
the νe and n̄e luminosity is powered by accretion, one finds
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Figure 2. Basic radiation-hydrodynamics results as a function of time after core bounce. The left panels depicts shock radius (top) and accretion rate Ṁ at 400 km
(bottom). The Ṁ curves terminate when the shock first exceeds that radius. The center panels show the electron neutrino luminosities (top) and electron antineutrino
and heavy-lepton neutrino luminosities (bottom), extracted at 450 km. We plot with thin lines the luminosities from the precursor 1D simulations until 40 ms after
bounce and with thick lines the luminosities in the 3D simulations started from the 1D simulations at 20 ms after bounce (38 ms for model s27WHW02). In the right
panels, we plot the mean electron neutrino (top) and electron antineutrino and heavy-lepton neutrino (bottom) energies. Note the strong dependence of the νe and n̄e
luminosities on the accretion rate. The mean energies exhibit much less Ṁ sensitivity and their overall increase is driven by the contraction of the PNS (see Figure 3).
Also note that the mean energies of νx neutrinos are overestimated by our simulations compared to others (see, for instance, Melson et al. 2015a), since we do not
include neutrino–nucleon inelastic scattering. Shock runaway occurs in s20WH07 and s27WHW02 when the Si/Si–O interface reaches the shock and Ṁ drops. No
such drop is necessary to revive s40WH07ʼs shock. Model s15WH07 begins shock expansion only after ∼500 ms and model s12WH07 does not experience shock
runaway by the end of its simulation.

9 The magnitude of the density jump is set by the scale of the jump in specific
entropy between shells (e.g., Sukhbold et al. 2017; Suwa et al. 2016).
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quick drops in Ṁ . This model’s shock begins to deviate
substantially from spherical symmetry at ∼100 ms after
bounce and shock runaway ensues at around 200 ms.

(2) The 20Me and 27Me models have lower postbounce Ṁ ,
but their density profiles have a steep discontinuity at the
Si/Si–O shell interface9 (see Figure 1). In both models, it
is the drop in ram pressure due to the rapidly decreasing
Ṁ that triggers shock runaway ∼170–200 ms after
bounce.

(3) In the 12Me and 15Me models with their moderate Ṁ
and low Lν, the shock recedes to radii around 100 km.
The accretion rate gradually decreases, and so do the νe
and n̄e luminosities (center panels of Figure 2), while the
mean neutrino energies increase due to the increasing
compactness of the PNS (bottom right panel of Figure 3).
Both models experiences SASI. Eventually, more than
500 ms after bounce, shock runaway occurs in the 15Me
model. The 12Me model does not experience shock
runaway by the end of our simulation, but it still has the
potential to resume expansion at a later time.

O’Connor & Couch (2015) and Summa et al. (2016) found
similar evolutions to modes (2) and (3) in 2D simulations.
In Figure 3, we present diagnostics that help understand the

three evolution modes. Shock expansion is facilitated by increases
in thermal and turbulent pressure that offset the accretion ram
pressure (e.g., Couch & Ott 2015). Stronger neutrino heating
means more thermal pressure and stronger driving of turbu-
lence. The neutrino heating rate scales approximately as
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respectively (Janka 2001; Summa et al. 2016). Therefore, the
hierarchy of heating rates among the models mirrors their
luminosity hierarchy (Figure 3). Assuming that the majority of
the νe and n̄e luminosity is powered by accretion, one finds
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heating for a higher accretion rate and a more compact PNS for
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(where Q̇net is the net heating rate; heating minus cooling)
is independent of progenitor. Since the mean neutrino energies
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Figure 2. Basic radiation-hydrodynamics results as a function of time after core bounce. The left panels depicts shock radius (top) and accretion rate Ṁ at 400 km
(bottom). The Ṁ curves terminate when the shock first exceeds that radius. The center panels show the electron neutrino luminosities (top) and electron antineutrino
and heavy-lepton neutrino luminosities (bottom), extracted at 450 km. We plot with thin lines the luminosities from the precursor 1D simulations until 40 ms after
bounce and with thick lines the luminosities in the 3D simulations started from the 1D simulations at 20 ms after bounce (38 ms for model s27WHW02). In the right
panels, we plot the mean electron neutrino (top) and electron antineutrino and heavy-lepton neutrino (bottom) energies. Note the strong dependence of the νe and n̄e
luminosities on the accretion rate. The mean energies exhibit much less Ṁ sensitivity and their overall increase is driven by the contraction of the PNS (see Figure 3).
Also note that the mean energies of νx neutrinos are overestimated by our simulations compared to others (see, for instance, Melson et al. 2015a), since we do not
include neutrino–nucleon inelastic scattering. Shock runaway occurs in s20WH07 and s27WHW02 when the Si/Si–O interface reaches the shock and Ṁ drops. No
such drop is necessary to revive s40WH07ʼs shock. Model s15WH07 begins shock expansion only after ∼500 ms and model s12WH07 does not experience shock
runaway by the end of its simulation.

9 The magnitude of the density jump is set by the scale of the jump in specific
entropy between shells (e.g., Sukhbold et al. 2017; Suwa et al. 2016).
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Figure 4. Volume rendering of the mass fraction of silicon at the end of the 3D simulation at 293.5 s (onset of collapse) on one patch of the Yin-Yang grid,
showing fuzzy silicon-rich updrafts of hot ashes (red) and silicon-poor downdrafts of fresh fuel. A global asymmetry in the updrafts is clearly visible. The inner
boundary of the oxygen shell (cyan) is relatively “hard” due to the strong buoyancy jump between the silicon and oxygen shell and therefore remains almost
spherical.

results for Q̇nuc and the kinetic energy in convective motions
from the 1D Kepler run for comparison. MLT only predicts
the radial velocities of rising and sinking convective plumes,
so we only compute the 1D analog to Er,

Er,1D =
1
2

r+Z

r�

⇢v2
conv dV, (13)

where vconv is calculated according to Equation (3).
The volume-integrated nuclear energy generation rate Q̇nuc

increases by more than two orders of magnitude during the
evolution towards collapse. Due to slight structural adjust-
ments after the initial transient and slightly di↵erent mixing in
the 3D model, Q̇nuc is roughly 30 . . . 50% higher in 3D than in
the Kepler for most of the run (see discussion in Section 3.4),
but still parallels the Kepler run quite nicely and perhaps as
closely as can be expected given the extreme dependence of
the local energy generation ✏̇nuc / T 30 on the temperature T
during oxygen burning.

The convective kinetic energy oscillates considerably dur-
ing the first 120 s, but exhibits a smooth secular increase re-
flecting the acceleration of nuclear burning. Equipartition be-
tween the radial and non-radial kinetic energy in convective

motions as suggested by Arnett et al. (2009) does not hold ex-
actly, instead we observe E✓,' > Er for most of the simulation,
suggesting that there may not be a universal ratio between the
non-radial and radial kinetic energy and that this ratio is in-
stead somewhat dependent on the shell geometry (width-to-
radius ratio, ratio of width and pressure scale height), which
can vary across di↵erent burning shells, progenitors, and evo-
lutionary phases. Anisotropic numerical dissipation might
also account for di↵erent results in di↵erent numerical simu-
lations. The turbulent Mach number in the oxygen shell (Fig-
ure 6) also increases steadily from about 0.04 . . . 0.05 after the
initial transient to 0.1 at collapse.

Again, there is reasonable agreement between the MLT pre-
diction Er,1D for the convective kinetic energy and Er in the
3D simulation (Figure 5). Er,1D and Er are in fact closer to
each other than E✓,' and Er in 3D. Somewhat larger devia-
tions arise immediately prior to collapse when convection is
no longer fast enough to adjust to the acceleration of nuclear
burning as we shall discuss in Section 3.2.

Except for the last few seconds, the kinetic energy in con-
vection scales nicely with the nuclear energy generation rate
both in 1D and 3D. For a case where the convective luminos-
ity Lconv and Q̇nuc balance each other in the case of steady-

B. Mueller, Viallet, Heger, & Janka (2016, arXiv:1605.01393)
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Figure 3. Top panel: Evolution of the maximum, minimum and average
shock radius (thick solid and dashed curves), the gain radius (dotted) and
the radii corresponding to densities of 1011 g cm�3 and 1012 g cm�3 (thin
solid lines) for models s18-1D (black), s18-3Dr (blue), and s18-3D (red).
Bottom panel: Mass accretion rate Ṁ for s18-1D, s18-3Dr, and s18-3D,
measured at a radius of 400 km.

resolution of 1.4�) with a non-equidistant radial grid extending out
to 105 km.

We use the equation of state of Lattimer & Swesty (1991) with
a bulk incompressibility modulus of K = 220 MeV in the high-
density regime. In the low-density regime, we use an EoS account-
ing for photons, electrons, and positrons of arbitrary degeneracy
and an ideal gas contributions from 17 nuclear species. Nuclear
statistical equilibrium is assumed above 5 ⇥ 109 K, and nuclear re-
actions below this temperature are treated using the approximate
“flashing” method of Rampp & Janka (2002).

3 IMPACT OF INITIAL PERTURBATIONS ON SHOCK
REVIVAL

3.1 Qualitative Impact on Shock Evolution and
Hydrodynamics Instabilities

To illustrate the role of initial perturbations in models s18-3D, s18-
3Dr, and s18-1D, we compare the evolution of the shock, gain, and
proto-neutron star radii and the mass accretion rate Ṁ in Figure 3.
We also show neutrino luminosities L⌫ and mean energies E⌫ for
all three models in Figure 4. Meridional slices of the entropy for all
three models at selected times are presented in Figure 5.

Figure 4. Neutrino luminosities (top panel) and mean energies of ⌫e (solid),
⌫̄e (dashed), and heavy flavour neutrinos ⌫X (dotted) in models s18-1D
(black), s18-3Dr (blue), and s18-3D (red). Note that a slightly di↵erent de-
velopment of prompt convection leads to di↵erences in the neutrino lumi-
nosities at early times for ⌫̄e, and that the slightly smaller accretion rate in
s18-3D results in a small reduction of the electron flavour luminosity be-
tween 0.1 s and 0.24 s after bounce. Models s18-3D and s18-3Dr exhibit a
drop in the electron flavour luminosity and a slower rise of the mean ener-
gies after shock revival.

As expected, di↵erences between the 3D models are minute at
early times. A minor peculiarity of model s18-1D is the develop-
ment of more violent prompt convection and shock ringing prior to
50 ms after bounce. This behaviour is connected to the imposition
of random seed perturbations in s18-1D on the entire grid, i.e. also
in the Fe and Si core, which is not explicitly perturbed in models
s18-3D and s18-3Dr. Moreover, patching the 3D O shell burning
simulation and the core of the 1D stellar evolution model together
results in slight hydrostatic adjustment in model s18-3D, which
slightly reduces the mass accretion rate and the electron flavour lu-
minosity (top panel of Figure 4) compared to s18-1D and s18-3Dr.
Despite these di↵erences, the shock trajectories in the three mod-
els nonetheless converge again after this transient phase of prompt
convection. 80 ms after bounce (top row Figure 5), they all show
very similar shock radii and incipient neutrino-driven convection
with small-scale plumes of similar size.

The evolution of the models starts to diverge around 150 ms
after bounce with slightly larger shock radii in models s18-3D and
s18-3Dr, This is well before the arrival of the Si/O shell interface at
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Outstanding Issue: 
Agreement in Results
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Global 1D CCSN Comparison
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E. O’Connor, Bollig, Burrows, SMC, Fischer, Janka, Kotake, Lentz, 
Liebendorfer, Messer, Mezzacappa, Takiwaki, Vartanyan (2018)
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Figure 2. Shock radius (solid) and protoneutron star radius (dashed) evolution as a
function of postbounce time for each simulation in the comparison. The protoneutron
star radius is defined as the radial location with a density of 1011 g cm�3, which is why
it is non-zero before bounce, while the shock radius is defined as the radius where the
velocity is maximally negative. In AGILE-BOLTZTRAN the shock front spans a large
radial range, here we take the radius where the velocity has dropped to half its peak
value rather than the radius of the maximally negative value.

compare well. During the early accretion phase (⇠75ms - ⇠200ms), the luminosities

predicted between these codes vary by at most ⇠3B/s (⇠5%) for electron neutrinos and

electron antineutrinos. Most of the codes predict a slightly higher ⌫̄e luminosity starting

at ⇠50-75ms and continuing through to 500ms.

The electron-type luminosities are mainly fueled by accretion, therefore when

the accretion rate drops around ⇠220ms, the electron-type luminosities have a

corresponding drop. The roughly constant mass accretion rate following this time is

responsible for the flat electron-type luminosities. After the silicon-oxygen interface

accretes and the luminosities plateau again, we find variations of at most ⇠5B/s

(⇠12%). As a result of the smoothed mass accretion rate in Figure 1 for the AGILE-

BOLTZTRAN simulation, the drop at ⇠220ms is not as sharp as the other codes. The

heavy-lepton neutrino luminosities show the largest discrepancy among the codes. The

largest absolute di↵erence between any two codes is ⇠6B/s at 400ms, which, due to

the low absolute luminosity, is upwards of 50%.

In addition to the neutrino luminosities, we show the neutrino average energies

in Figure 4. The average energies are computed by weighting the neutrino energies

by the neutrino number spectrum. In the left panel we show electron neutrino (solid

lines) and electron antineutrino (dashed-dotted lines) average energies while in the right

Global Core-Collapse Supernova Comparison 14

Figure 3. Neutrino luminosities as a function of postbounce time. In the left panel
we show electron-type neutrino luminosities (solid lines show electron neutrinos while
dashed-dotted lines show electron antineutrinos) and in the right panel we show the
characteristic heavy-lepton neutrino luminosity (dashed line). For clarity, we show
an inset to highlight the early accretion epoch for the electron-type neutrinos. Some
curves have been smoothed with neighboring zones to remove noise and improve clarity.

panel we show the characteristic heavy-lepton neutrino average energies (dashed lines).

Note, the scales are di↵erent. In all simulations we see common features. The electron

neutrino average energies peak at bounce and then reach a minimum around ⇠ 45ms

after bounce. They then rise, at a similar rate as the electron antineutrinos, until

the silicon-oxygen interface accretes in around ⇠ 220ms. After this, the rise of the

mean energies slows. All codes agree well (. 8% for electron neutrinos and . 6% for

antineutrinos) until ⇠200ms, after this time we see a divergence. For the heavy-lepton

neutrino energies we see good agreement. We note that the FLASH ⌫x mean energy

is higher, as expected, because neutrino-electron inelastic scattering is omitted in this

comparison. Furthermore, the blips in the FLASH mean energies (both electron-type

and heavy lepton-type) occur when the shock front passes a mesh-refinement boundary.

At this time, the energy-space coupling terms, which depend on the spatial gradient of

the velocity field (which is large at the shock), are adversely impacted by the jump in

grid spacing.

Next, we look at the predicted neutrino heating rate in each simulation. We define

this heating as the rate of energy deposition into the internal energy of the matter

in zones where this net energy exchange is positive (i.e. neutrino heating in the gain

region)§. This particular quantity is highly nonlinear in that it sensitively depends on

the electron neutrino and antineutrino spectra (both the overall luminosity and also the

§ While included in the simulation, Fornax does not include the energy exchanged from neutrino-
electron scattering in this heating source term. We estimate from the other simulations that this would
increase the heating by less than 5% at the peak and less than 10% at later times.



Toward Exascale Astrophysics 
of Mergers and Supernovae 

TEAMS
• In-depth study of r-process sites 

• “Clearing” house for data/results 

• Code comparisons 

• 3D CCSN progenitors (MSU/SBU) 

• 3D MHD CCSNe (MSU postdoc C. 
Harris)
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Outstanding Issue: 
Rotation and B-fields
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Magnetorotational Effects

!20

“The last refuge of the astrophysical scoundrel.”

lGRBs 
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Figure 3: Turbulent kinetic and electromagnetic energy spectra. The top two panels show the

energy as a function of dimensionless wavenumber k. The top left panel compares the electromag-

netic energy across all four resolutions. The top right panel shows a time series of electromagnetic

energy spectra for the 50m simulation only. In the two upper panels the turbulent kinetic energy as

computed from the 50m simulation, a line indicating Kolmogorov scaling (k�5/3), and the initial

electromagnetic energy spectrum are shown. The bottom panel shows the electromagnetic energy

at a given wavenumber Ek versus time and an exponential and linear fit.
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Magnetorotational Explosions
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See also Summa et al. 2018

Preliminary

SMC et al., in prep.

Compare to Moesta et al. (2014)



Magnetorotational Explosions
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SMC et al., in prep.



Other outstanding issues

• Binarity 

• Resolution in 3D 

• Neutrino oscillations 

• Complex neutrino interactions 

• Uncertain nuclear equation of state 

• Later time simulations 

• unknown unknowns
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Turbulent Frontiers

• The neutrino mechanism works - time to 
compare observation 

• Turbulence aids neutrinos in explosions 

• (3D) Progenitor structure crucial  

• Emerging agreement in results (code 
comparisons!) 

• Magnetorotational effects may matter! 

• Time to make rigorous comparison to 
observations
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