Extrasolar Planets
ASTR 35800 / GEOS 32080 (grad) & ASTR 28200 (undergrad)
Spring 2016 at UChicago
Daniel Fabrycky
M/F 1:30-2:50, HGS 184
Website: http://astro.uchicago.edu/~fabrycky/exoplanetclass/

Extrasolar planets, a.k.a. exoplanets, are planets orbiting other stars. First definitively detected in the mid 1990s, the planet count has rapidly expanded and their physical characterization has sharpened with improved observational techniques. Theoretical studies of planetary formation and evolution are now attempting to understand this statistical sample. The field also aspires to address questions about life in the universe. Topics are the radial velocity, transit, and other discovery and characterization techniques; statistical distributions of known planets; comparisons among planet structure and planetary system types; formation in a protoplanetary disk and subsequent dynamical evolution; the goal of finding life on an exoplanet; colonization of exoplanets and the Fermi paradox.

Required Text: Exoplanets, edited by Sara Seager <amazon $35>

Office hours: by appointment: fabrycky@uchicago.edu, ERC 539
TA: Sean Mills: smills@uchicago.edu, ERC 550
Assignment meetings: Thursday 1:30 pm, April 7, April 21, May 12. ERC 545

Schedule:
Mar 28 Introduction, history, context
Apr 1 Planetary orbits
 Reading – Murray & Correia chapter
Apr 4 Solar System summary and observable properties of exoplanets
 Seager & Lissauer
Apr 8 techniques: radial velocity
 Lovis & Fischer
 Assignment 1 due.
Apr 11 techniques: transit
 Winn
Apr 15 techniques: direct imaging
 Traub & Oppenheimer
Apr 18 techniques: microlensing, astrometry, timing (e.g., pulsars)
 First parts of 3 chapters
Apr 22 Non-Keplerian Dynamics chapter + Kepler-9/19/Multis
 Fabrycky chapter
 Assignment 2 due.
Apr 25 statistical distributions of exoplanets, system architectures
 reading Winn & Fabrycky ARAA
Apr 29 atmospheres observation
 Burrows & Orton
May 2 planetary structure and composition
 Sotin et al., Fortney et al.

May 6 Midterm (ASTR 28200) or Project Proposal due (Grad)
May 9 protoplanetary disks
 Armitage review article
May 13 formation of terrestrial and giant planets
 Chambers
May 16 interactions with the natal disk – migration
 Lubow & Ida
May 20 interactions among planets
 paper by Ford & Rasio
May 23 life and biosignatures
 reading - Meadows and Seager chapter
May 27 colonization of exoplanets and the Fermi paradox
 reading - Kite & Howard article
 Assignment 3 due.
May 31 - June 3 Reading-period. Review. Discussions with prof and TA.
June 1 Final for graduating seniors
June 6 Final (for underclassmen) AND Project due and Presentations (for grad students)

Grades – ASTR 28200: Each assignment is 15% (slight rebalancing -- short #4),
 each test is 20%.
 Grads: Each assignment is 15%, Proposal=10%, Project=30%.

Attendance – Important! If you miss a lecture, please follow up with professor to get the high points.

Policy on Late Work – The assignments can be turned in late with a 10% deduction per day late. The number of days late is rounded up from the time the assignment is due. For example, an assignment that is turned in on Saturday at 6pm (electronically) and that was due on the preceding Friday (at class time, 1:30pm) would be counted as 2 days late, so 20% off.

Policy on Group Work – Group work on the assignments is encouraged, but each person must submit a complete report in their own words, and the report must say who else collaborated on the work.