Radio Emission From Supernovae

 


                                    Simulated Radio Images and Light Curves of Young Supernovae -

                                                 Mioduszewski, Amy J.; Dwarkadas, Vikram V.; Ball, Lewis, ApJ, 562, 869


            Abstract: We present calculations of the radio emission from supernovae based on high-resolution simulations of the hydrodynamics and radiation     transfer, using simple energy density relations that link the properties of the radiating electrons and the magnetic field to the hydrodynamics. As a specific example we model the emission from SN 1993J, which cannot be adequately fitted with the often-used analytic minishell model, and present a good fit to the radio evolution at a single frequency. Both free-free absorption and synchrotron self-absorption are needed to fit the light curve at early times, and a circumstellar density profile of r^{-1.7} provides the best fit to the later data. We show that the interaction of density structures in the ejecta with the reverse supernova shock may produce features in the radio light curves such as have been observed. We discuss the use of high-resolution radio images of supernovae to distinguish between different absorption mechanisms and determine the origin of specific light curve features. Comparisons of VLBI images of SN 1993J with synthetic model images suggest that internal free-free absorption completely obscures emission at 8.4 GHz passing through the center of the supernova for the first few tens of years after explosion. We predict that at 8.4 GHz the internal free-free absorption is currently declining, and that over the next ~40 yr the surface brightness of the center of the source should increase relative to the bright ring of emission seen in VLBI images. Similar absorption in a nearby supernova would make the detection of a radio pulsar at 1 GHz impossible for ~150 yr after explosion.

Simulations: Here's an MPEG simulation showing the evolution of the radio supernova with time in the simulations. The upper frame contains the simulated images, and the lower frame the flux density profile from the supernova. At early times, the SN is dominated by synchrotron self-absorption, and the flux profile is flat over the entire surface. But once the SN becomes optically thin the radio emission peaks in the thin shell between the inner and outer shocks. The simulations shows that the width of the radio emission region grows with time, as expected. These simulations compare quite well with the observations.
(Please note that the scale on the image is inverted. Red is actually the maximum flux.)


            You can compare these simulated images to the observed ones. Norbert Bartel and his group have some fascinating VLBI observations of 1993J, shown here.


                        Simulated Radio Images and Light Curves of SN 1993J -

                                                 Dwarkadas, Vikram V., Mioduszewski, Amy J., Ball, Lewis, 

in the proccedings of IAU Colloquium 192, "SUPERNOVAE (10 years of SN1993J)", edited by J.M. Marcaide and K.W. Weiler, Springer Verlag 2004


Abstract : We present calculations of the radio images and light curves from supernovae, based on high-resolution numerical simulations of the hydrodynamics and radiation transfer in a spherically symmetric medium. As a specific example we model the emission from SN1993J. This supernova does not appear to be expanding in a self-similar fashion, and cannot be adequately fitted with the often-used analytic mini-shell model. We present a good fit to the radio evolution at a single frequency. Both free-free absorption and synchrotron self-absorption are needed to fit the light curve at early times, and a circumstellar density profile of $\rho \sim r ^{-1.7}$ provides the best fit to the later data. Comparisons of VLBI images of SN1993J with synthetic model images suggest that internal free-free absorption completely obscures emission at 8.4~GHz passing through the center of the supernova for the first few tens of years after explosion

SN 1993J VLBI. IV. A Geometric Distance to M81 with the Expanding Shock Front Method

                                          N. Bartel, M. F. Bietenholz, M. P. Rupen and V. V. Dwarkadas


The Astrophysical Journal, Volume 668, Issue 2, pp. 924-940, 2007


We compare the angular expansion velocities, determined with VLBI, with the linear expansion velocities measured from optical spectra for supernova 1993J in the galaxy M81, over the period from 7 days to ~9 yr after shock breakout, and estimate the distance to SN 1993J using the expanding shock front method (ESM). We find that the best distance estimate is obtained by fitting the angular velocity of a point halfway between the contact surface and outer shock front to the maximum observed hydrogen gas velocity. We obtain a direct, geometric, distance estimate for M81 of D=3.96+/-0.05+/-0.29 Mpc with statistical and systematic error contributions, respectively, which combine to a total standard error of +/-0.29 Mpc. The upper limit of 4.25 Mpc corresponds to the hydrogen gas with the highest observed velocity just reaching out to the contact surface a few days after shock breakout. The lower limit of 3.67 Mpc corresponds to this gas reaching as far out as the forward shock for the whole observing period, which would mean that Rayleigh-Taylor fingers have grown to the forward shock already a few days after shock breakout. Our distance estimate is 9%+/-13% larger than that of 3.63+/-0.34 Mpc from the HST Key Project. The radio shell and the Hα absorbing and emitting gas are similarly decelerated on average, but the latter slightly less so than the former several years after shock breakout. This may indicate developing Rayleigh-Taylor fingers, extending progressively further into the shocked circumstellar medium.

Performing a stellar autopsy using the radio-bright remnant of SN 1996cr


Meunier, C.; Bauer, F. E.; Dwarkadas, V. V.; Koribalski, B.; Emonts, B.; Hunstead, R. W.; Campbell-Wilson, D.; Stockdale, C.; Tingay, S. J.


Monthly Notices of the Royal Astronomical Society, 213,  431,  p.2453


We present newly reduced archival radio observations of SN 1996cr in the Circinus Galaxy from the Australia Telescope Compact Array and the Molonglo Observatory Synthesis Telescope, and attempt to model its radio light curves using recent hydrodynamical simulations of the interaction between the supernova (SN) ejecta and the circumstellar material (CSM) at X-ray wavelengths. The radio data within the first 1000 d show clear signs of free-free absorption (FFA), which decreases gradually and is minimal above 1.4 GHz after day ˜3000. Constraints on the FFA optical depth provide estimates of the CSM free electron density, which allows insight into the ionization of SN 1996cr's CSM and offers a test on the density distribution adopted by the hydrodynamical simulation. The intrinsic spectral index of the radiation shows evidence for spectral flattening, which is characterized by α = 0.852 ± 0.002 at day 3000 and a decay rate of Δα = -0.014 ± 0.001 yr-1. The striking similarity in the spectral flattening of SN 1987A, SN 1993J and SN 1996cr suggests this may be a relatively common feature of SNe/CSM shocks. We adopt this spectral index variation to model the synchrotron radio emission of the shock, and consider several scalings that relate the parameters of the hydrodynamical simulation to the magnetic field and electron distribution. The simulated light curves match the large-scale features of the observed light curves, but fail to match certain tightly constraining sections. This suggests that simple energy density scalings may not be able to account for the complexities of the true physical processes at work, or alternatively, that the parameters of the simulation require modification in order to accurately represent the surroundings of SN 1996cr.

Radio Imaging of SN1993J: The Story Continues


Bietenholz, M.; Bartel, N.; Rupen, M. P.; Dwarkadas, V. V.; Beasley, A. J.; Graham, D. A.; Venturu, T.; Umana, G.; Cannon, W.; Conway, J.


Proceedings of the 10th European VLBI Network Symposium and EVN Users Meeting: VLBI and the new generation of radio arrays. September 20-24, 2010. Manchester, UK


We present the most recent VLBI images of SN 1993J, taken at 1.7 GHz on 2010 March 5-6, along with a discussion of its evolution with time. The new image is the latest in a sequence covering almost the entire lifetime of the supernova. For these latest observations we used an "in beam calibrator" technique, and obtained a background rms brightness of 3.7 micro-Jy/beam. The supernova shell remains quite circular in outline. Modulations in brightness are seen around the rim which evolve relatively slowly, having remained generally similar over the last several years of observation. We determine the outer radius of the supernova using visibility-plane model-fitting. The supernova has slowed down to around 30% of its original expansion velocity, and continues to expand with radius approximately proportional to t^0.8, however, deviations from a strict power-law evolution are seen. We do not find any clear-cut evidence for systematically frequency-dependent evolution, suggesting that the radii as determined from visibility-plane model-fitting continue to provide reasonable estimates of the physical outer shock-front radius.