# **DESpec Optics**

- I. Constraints
- II. Requirements
  - Wavelength range
  - PSF Size
    - Optimal Fiber diameter
    - Zenith Angle
  - Wavelength resolution
- III. Optical Design
  - ADC
    - Unpowered v. powered
  - Field Lens
- IV. Summary





### Constraints

DARK ENERGY SURVEY

- C1-C4 leave intact
- Can remove filter for ADC
- Can replace C5 & focal plane.



**DECam Mechanicals** 



#### Robby the Robot



#### **DECam Corrector and Camera**

Steve Kent (FNAL)



# Requirements

- Wavelength range
  - Red galaxies z=0 to 0.7 requires  $\lambda = 0.5 1.0$
  - Emission Line galaxies
    - H $\alpha$  z=0 to 0.5 requires  $\lambda$  = 0.65 1.0
    - [OIII] z=0 to 0.9 requires  $\lambda = 0.49 1.0$
    - [OII] z=0.5 to 1.7 requires  $\lambda$  = 0.55 1.0
  - Can photo-z's resolve ambiguities?
- Wavelength (2-pixel) resolution
  - R=1000 good enough to measure emission, absorption lines
    - FWHM = 300 km/s
    - Split Hα, [NII] doublet
  - R=2000 Partially resolve OH night sky forest
  - R=3800 split [OII] doublet
- Airmass sec(z) <= 1.3 (DES simulations)
- PSF see next slide



#### **CTIO Seeing**

DARK ENERGY SURVEY

#### **Measured Seeing - Blanco Prime Focus**

#### DIMM measurements v. Blanco Prime Focus





# **Optimal Fiber Diameter**

- Key factors
  - Redshift success requires spectrum have  $S/N > (S/N)_{CRIT}$
  - Goal is to reach nP = 1 at  $z = z_{MAX}$ 
    - dN/dz- $d\Omega \approx 5000$  gal/sq.deg at z=1.6
  - At a fixed magnitude, galaxies have a range of diameters
    - Large, fuzzy galaxies require longer exposure times.
  - We are sky-dominated
  - Select fiber diameter that maximizes rate of collecting redshifts at  $z = z_{MAX}$  averaged over all seeing conditions.
- (CAUTION: In what follows I use Gaussians for PSF, galaxy shapes! Easy to calculate)



DARK ENERGY SURVEY

Use Cosmos Mock Catalog

Galaxy radius distribution is log-normal

$$dN/d(\log r) = exp[-\log (r/r_m)/2\sigma^2]$$

 $\sigma = 0.2$   $\log_{10} r_{med} = 3.66 - 0.114*m_{I-band}$ (units are ACS pixels = 0.03'')



Distribution in log r m = 22 - 22.5



- A) Select mag =  $m_{\text{LIM}}$  that achieves proper galaxy density
  - $m_{\text{LIM}} \approx 23$
- B) Go fainter by  $\Delta m$  and select galaxies with r < r<sub>CRIT</sub> such that density is unchanged. We expose to reach S/N = (S/N)<sub>CRIT</sub> for m = m<sub>LIM</sub> +  $\Delta m$ , r = r<sub>CRIT</sub>
- C) For each  $\Delta m$ , compute rate for collecting redshifts v.  $r_{_{FIBER}}$
- D) Pick  $\Delta m$ , r<sub>FIBER</sub> that maximizes rate.
  - $\Delta m = 0.15$
  - $r_{_{FIBER}} = 0.85$ " to 0.9 " (diameter = 1.7" to 1.8")
  - We exclude ~ 30% of galaxies with  $r_{1/2} > 0.41''$
- NOTE: Rate changes slowly as we move away from optimal
  - e.g., rate declines by 5% at r<sub>FIBER</sub> = 0.73" (BigBOSS value)

Steve Kent (FNAL)

London DESpec Meeting (Mar 7/8 2011)



### **Radius-Mag Relation**



### **Atmospheric Refraction**

DARK ENERGY SURVEY

#### λ = 0.55 - 1.08 μ





# **PSF Budget - DECam**

DARK ENERGY

| Table 2: Image quality budget |          |                   |                                       |
|-------------------------------|----------|-------------------|---------------------------------------|
| Source                        | FWHM     | <b>RMS</b> Radius | Reference                             |
|                               | (arcsec) | (microns)         |                                       |
| Dome Seeing                   | 0.1      | 3                 | Not known with certainty              |
| Telescope Guiding             | 0.03     | 1                 | Guess - take same as focus errors     |
| Wind Shake                    | 0        | 0                 | Assume "calm" night                   |
| Corrector                     |          |                   |                                       |
| Design                        | 0.27     | 9.3               | Current performance Blanco-2605       |
| Manufacturing                 | 0.11     | 3.6               | Radii, index, thickness, homogeneity, |
|                               |          |                   | polishing, etc                        |
| Silica Inhomogeneity          | 0.04     | 1.4               | Grade C                               |
| Assembly Errors               | 0.08     | 2.6               | Decenter, tilt, etc.                  |
| Flexure                       | 0.04     | 1.5               | Gravity loading, etc.                 |
| Focal plan location           | 0.05     | 1.7               | 30 micron p-p                         |
| Lens Deformation              | 0.03     | 2.0               | Gravity Loading                       |
| Thermal                       | 0.05     | 1.6               | -5 to +25 C, Steel                    |
| CCD Diffusion                 | 0.31     | 10                | Assumes 7.5 microns rms 1-D, LBNL     |
|                               |          |                   | papers                                |
| Depth-of-focus                | 0.03     | 1.0               | Kubik and Estrada report (i band)     |
| Prim. mir. Figure             | 0.16     | 5.3               | CTIO mirror testing report            |
| Prim. mir. support            | 0        | 0                 |                                       |
| (static)                      |          |                   |                                       |
| Prim. mir. support            | 0        | 0                 | Assume small with active control of   |
| (flexure)                     |          |                   | optics/camera position                |
| Tel. collim. (static)         | 0        | 0                 | Combine with flexure                  |
| Tel. collim. (flexure)        | 0.05     | 1.7               | 200 micron offset                     |
| Focus                         | 0.03     | 1                 | Scaled from SDSS 2.5 m focus loop     |
|                               |          |                   | performance                           |
| TOTAL                         | 0.49     | 16.5              | Telescope + Instrument                |

Steve Kent (FNAL)

London DESpec Meeting (Mar 7/8 2011)



- Old
  - Design 0.27
    CCD diffusion 0.31
    Depth-of-focus 0.03
    "Contingency" 0.25
    Combined 0.48
- New
  - Design
  - Differential Refraction
  - Fiber positioning
  - Astrometry



### despec-v2c

- P Features
  - ADC with 2 powered surfaces
  - 5 glass elements total
  - FWHM (zenith configuration)
    - 0.45" at center
    - 0.66" at field edge
  - $-\lambda$  range 0.55-1.08  $\mu$ 
    - (Can stretch to 0.5)
- Limitations
  - ADC powered surfaces may be difficult
  - ADC will be difficult to cement
  - Not telecentric => must tilt fibers (up to 4.5°)





# DESpec1ADC

- Design by Will Saunders
- Features
  - Add field lens
  - Keep ADC
  - FWHM
    - 0.67" at center
    - 0.87" at edge
  - Telecentric (1° max tilt)
  - Focal plane slightly curved
- Limitations
  - Adding glass thickness degrades images.





## despec4

- Design by Will Saunders
- Features
  - NO ADC but retains filter substrate
  - C5 made of FK5
  - Field lens made of BK7
  - $-\lambda$  range 0.55-1.08  $\mu$ 
    - (Can stretch to 0.5)
  - FWHM
    - 0.59" at center
    - 0.65" at edge
- Limitation
  - FWHM at edge increases to 0.85" at sec(z) = 1.5





# Summary

- No design matches DECam in overall image quality
- There are two designs with nearly equal image quality:
  - a) despec-v2c ADC, but not telecentric
    - Can we construct a fiber positioner with tilted spines?
  - b) despec4 No ADC, but telecentric
    - Limited zenith angle coverage -is this acceptable?
    - sec(z) = 1.3 (most of DES survey is below this), survey rate drops by 15%.
- Can we tolerate softer images (FWHM=0.85")?
  - FIber diameter => 2.0"
  - Survey rate drops by 25%