Review of Photometric Redshifts and Application to the Dark Energy Survey

Huan Lin, Fermilab
Photometric redshifts (photo-z’s) are determined from the fluxes (or magnitudes or colors) of galaxies through a set of filters.

May be thought of as redshifts from (very) low-resolution spectroscopy.

Photo-z’s are needed in particular when it’s too observationally expensive to get spectroscopic redshifts (e.g., if galaxies are too many or too faint).

Well-calibrated photo-z’s are a key ingredient to obtaining cosmological constraints in large photometric surveys like DES and LSST.
• The photo-z signal comes primarily from strong galaxy spectral features, like the 4000 Å break, as they redshift through the filter bandpasses.

Early-type galaxy spectrum at three different redshifts (z=0, 0.7, 1.4) overlaid on SDSS griz filter throughputs.

Figure from H. Oyaizu
Cluster Galaxy Colors vs. Redshift

- **Simulated cluster galaxy colors** (with noise) vs. redshift, based on one particular early-type galaxy spectral energy distribution (SED) evolution model (from “Pegase-2” library)

- From plotted color vs. redshift trends, one can see how the redshift (photo-z) may be inferred from the colors
Galaxy Colors vs. Redshift

- Simulated galaxy colors (with noise) vs. redshift from the “DES5yr” mock galaxy catalog

- A set of 4 empirical “CWW” (Coleman, Wu & Weedman 1980) SEDs (red curves) used to model the galaxy population

- Can see it’s harder to estimate photo-z’s when full galaxy population is present
Slicing through multicolor space: Connolly et al. (1995)

Example showing how it is possible to disentangle redshifts from galaxy colors/ magnitudes in multicolor space

Fig. 1. The distribution of galaxies within the three-color space U, B_J, and R_F is shown for the sample of galaxies derived from the spectroscopic redshift surveys of Koo & Kron. The redshift of each galaxy is encoded by the color of its data point, blue corresponds to $z=0$ and red to $z=0.5$. The color table is set so that each color maps onto an interval of 0.1 in redshift. Panels (a), (b), and (d) show three orthogonal perspectives of the data. Panel (c) shows a schematic of the distribution. The position of a galaxy within the three-color space is determined by its redshift, luminosity, and spectral type. For a given redshift the data form thick slabs in the UB_JR_F space. Redshifting the galaxies moves these slabs through the color space (due to dimming and K corrections).
Photo-z Methods

- Two basic categories
 - Machine learning/training set/empirical methods
 - Template-fitting methods
- For lists of methods, see, e.g.,
 - Sanchez et al. (2014): DES Science Verification (SV) photo-z comparison testing; later slides
• **Machine learning/training set/empirical methods**

 • Use “training set” to derive a relation between redshift and magnitudes/fluxes/colors/etc.

 • May also output $p(z)$, the full redshift probability distribution function (PDF), in addition to “point” estimates

 • Rely on training set, which can often be incomplete/unrepresentative of full photometric data

 • Simple examples:
 • Polynomial fit (Connolly et al. 1995)
 • Neural networks (Collister & Lahav 2004)
• Example: quadratic polynomial fit (e.g. Connolly et al. 1995)
 • Adopt a quadratic polynomial relation between redshift z and magnitudes g,r,i

\[z = a_0 + a_1 \cdot g + a_2 \cdot r + a_3 \cdot i \\
+ a_4 \cdot g \cdot g + a_5 \cdot r \cdot r + a_6 \cdot i \cdot i \\
+ a_7 \cdot g \cdot r + a_8 \cdot g \cdot i + a_9 \cdot r \cdot i \]

• Derive best-fit polynomial coefficients $a_0, a_1, a_2, \ldots, a_9$ from training set data with spectroscopic redshifts

• Photo-z’s then come from applying best-fit relation to photometric data

• Training set and photometric data should be observed by the same telescope/instrument/filters, ideally under the same conditions (exposure time, seeing, etc.)
Photo-z Methods

- Example: artificial neural network (from Oyaizu et al. 2008)

\[
I_i = \sum_j w_{ij} O_j \quad O_i = f(I_i) \quad \text{activation function, e.g. } f(I_i) = \frac{1}{1 + e^{-I_i}}
\]

Derive weights \(w_i \) by minimizing score function

\[
E = \frac{1}{2} \sum_i (z_{\text{spec}}^i - z_o^i)^2
\]

Fig. 3.— Simple FFMP network with three layers and configuration 2:1:1. The inputs are the two magnitudes, \(m_1 \) and \(m_2 \). \(I_x \) denotes the input from node \(x \), and \(O_x \) is the corresponding output of this node. The weights \(w \) associated with each connection are found by training the network using training and validation sets (see text).

- The neural network here is really just a complex function of the input magnitudes
- To avoid “overfitting,” minimization steps are done on training set but final set of weights are chosen to be those that perform best on independent “validation set”
- Multiple networks may also be examined to optimize photo-z solution
• **Template-fitting methods**
 - Use a set of SED templates (from real data or from models)
 - Calculate fluxes/magnitudes using redshifted templates and filter throughputs
 - Obtain best-fitting galaxy redshift and template type, and also \(p(z) \)
 - Rely on template library, which may not fully span the range of galaxy types in photometric sample

• Examples:
 - HyperZ (Bolzonella et al. 2000)
 - BPZ (Benitez 2000, Coe et al. 2006)
Example of galaxy template library based on real data

Use of a small number of templates (with interpolation between them), can give “ok” photo-z’s

Fig. 5. Each panel corresponds to one of the four CWW templates (Ell, Sbc, Scd, Irr) and one starburst template (Kinney et al. 1996). The points correspond to the flux of each galaxy redshifted to the rest-frame using the spectroscopic redshifts. The green dashed lines are the initial SEDs and the red solid lines are the optimised SEDs which are the output of the procedure described in Sect. 4.2. The starburst template is not optimised.

Ilbert et al. (2006)
From Douglas Tucker

- **DES throughput curves**, including atmosphere, telescope, DECam optics, filters, and CCDs

- Need to be accurately measured for use in template fitting photo-z methods
Example UV to IR SED from a more modern galaxy SED atlas (Brown et al. 2014)

Figure 1. Ultraviolet to mid-infrared SED of NGC 6240 (top panel), along with some of the GALEX, SDSS, 2MASS, and Spitzer images that were used to constrain and verify the SED. The horizontal bar denotes an angular scale of 1'. In the top panel, the observed and model spectra are shown in black and gray respectively, while the photometry used to constrain and verify the spectra is shown with red dots.
Fig. 4. Example of best-fitted templates on multi-colour data for a galaxy at $z_s = 0.334$. The solid black points correspond to the apparent magnitudes in the $u^*, B, g', V, r', R, i', I, z'$ filters from the left to right respectively. The solid line corresponds to a template redshifted at $zp = 2.85$ and the dotted line at $zp = 0.24$. The enclosed panel is the associated Probability Distribution Function (PDFz).

- Illustration of template fitting method
- True redshift is $z=0.334$
- Also shows confusion between low redshift “Balmer break” and high redshift “Lyman break” features (at about 5000Å observed wavelength)
- Degeneracy can be broken with more data (here, more IR data) or by using priors (see next slides)

Ilbert et al. (2006)
Photo-z Methods

- Example: Bayesian photometric redshifts (BPZ; Benitez 2000)
 - Bayes’ Theorem (redshift z, colors C, magnitudes m_0, types T)

 \[
p(z \mid C, m_0) = \frac{p(z \mid m_0)p(C \mid z)}{p(C)} \propto p(z \mid m_0)p(C \mid z)
 \]

- Sum over posterior probability distributions for different galaxy types to get final redshift PDF
 \[
p(z \mid C, m_0) = \sum_T p(z, T \mid C, m_0) \propto \sum_T p(z, T \mid m_0)p(C \mid z, T)
 \]

- Using a flat (i.e., constant) prior is the same as maximum likelihood
Figure 2.—Example of the main probability distributions involved in BPZ for a galaxy at $z = 0.28$ with an Irr spectral type and $I \approx 26$, to which random photometric noise is added. From top to bottom: (a): Likelihood functions $p(C \mid z, T)$ for the different templates used in §4. Based on ML, the redshift chosen for this galaxy would be $z_{\text{ML}} = 2.685$, and its spectral type would correspond to a spiral. (b): Prior probabilities, $p(z, T \mid m_0)$, for each of the spectral types (see text). Note that the probability of finding a spiral spectral type with $z > 2.5$ and a magnitude $I = 26$ is almost negligible. (c) Probability distributions, $p(z, T \mid C, m_0) \propto p(z, T \mid m_0)p(C \mid z, T)$, that is, the likelihoods in the top plot multiplied by the priors. The high-redshift peak due to the spiral has disappeared, although there is still a small chance of the galaxy being at high redshift if it has an Irr spectrum, but the main concentration of probability is now at low redshift. (d) Final Bayesian probability, $p(z \mid C, m_0) = \Sigma_T p(z, T \mid C, m_0)$, which has its maximum at $z_b = 0.305$. The shaded area corresponds to the value of p_Ap, which estimates the reliability of z_b and yields a value of ≈ 0.91.

Benitez (2000)
DES photometric redshifts

- DES will rely on photometric redshifts (photo-z’s), i.e., redshifts determined from photometric imaging data, in primarily the 5 DES filters grizY (plus u band and near-IR JHK as available)

- Well understood photo-z’s and photo-z errors are vital for deriving accurate cosmology constraints from the different DES dark energy probes

- Large and deep samples of galaxies with spectroscopic redshifts and/or highly precise photo-z’s, combined with DES photometry, are used to train and calibrate (validate) DES photo-z measurements
DESS Science Verification (SV)
spectroscopic redshift training set fields

- ugrizY imaging was obtained during DES Science Verification (SV; Nov 2012 – Feb 2013) on 4 fields with deep spectroscopic redshift training set data
 - **VVDS Deep 02hr** (in DES supernova X3 deep field)
 - VVDS Deep redshift sample to $I_{AB} < 24$
 - **CDFS** (in DES supernova C3 deep field)
 - VVDS Deep redshift sample to $I_{AB} < 24$
 - ACES redshift sample to $i \approx 23$
 - OzDES Deep redshift sample to $i < 21$
 - **VVDS Wide 14hr**
 - VVDS Wide redshift sample to $I_{AB} < 22.5$
 - **COSMOS** (courtesy of DECam community program, PI A. Dey)
 - zCOSMOS Bright redshift sample to $I_{AB} < 22.5$
 - VVDS Wide 10hr redshift sample to $I_{AB} < 22.5$
 - Plus additional bright redshift samples in above fields from SDSS-I/II, SDSS-III/BOSS, and 2dFGRS
Photo-z comparison tests on DES SV data: Standardized redshift samples

- Goal to compare, test, and optimize photo-z codes used in the DES Photo-z Working Group
- “Standardized” training and validation galaxy redshift data sets assembled for use by all codes
 - “Main”: DES main survey depth photometry
 - 5859 (training set) + 6381 (validation set) high-confidence redshifts
 - “Deep”: typically 3x exposure of single supernova deep field visit
 - 7249 (training set) + 8358 (validation set) high-confidence redshifts
- Standardized set of DECam system throughput curves also assembled for use
Photo-z comparison tests on DES SV data: Training sets

Figure 19. i-band magnitude distributions for the four training samples used in Test 4, each corresponding only to one of the four major spectroscopic samples used, one from each of the calibration fields.

Primary SV training sets

Sanchez et al. (2014)

Figure 4. g- and i-magnitude distributions for the full, calibration and weighted calibration sample. The difference between the full and the calibration samples is apparent, the latter being significantly brighter. After applying the weighting procedure described in Lima et al. (2008), the weighted calibration distributions agree very well with the corresponding DES-SV distributions.

Spectroscopic data weighted to match photometric sample
Photo-z comparison tests on DES SV data: Photo-z codes

Table 3. List of methods used to estimate photo-z’s. Code type and main references are given.

<table>
<thead>
<tr>
<th>Code</th>
<th>Type</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESDM, artificial neural network</td>
<td>Training based</td>
<td>Oyaizu et al. (2008a)</td>
</tr>
<tr>
<td>ANNZ, artificial neural network</td>
<td>Training based</td>
<td>Collister & Lahav (2004)</td>
</tr>
<tr>
<td>TPZ, prediction trees and random forest</td>
<td>Training based</td>
<td>Carrasco Kind & Brunner (2013, 2014)</td>
</tr>
<tr>
<td>RVMZ, relevance vector machine</td>
<td>Training based</td>
<td>Tipping (2001)</td>
</tr>
<tr>
<td>NIP-KNNZ, normalized inner product nearest neighbor</td>
<td>Training based</td>
<td>de Vicente et al., in preparation</td>
</tr>
<tr>
<td>ANNZ2, machine-learning methods</td>
<td>Training based</td>
<td>Sadeh et al., in preparation</td>
</tr>
<tr>
<td>ARBORZ, boosted decision trees</td>
<td>Training based</td>
<td>Gerdes et al. (2010)</td>
</tr>
<tr>
<td>SKYNET, classification artificial neural network</td>
<td>Training based</td>
<td>Bonnett (2013) and Graff et al. (2013)</td>
</tr>
<tr>
<td>BPZ, Bayesian photometric redshifts</td>
<td>Template based</td>
<td>Benitez (2000) and Coe et al. (2006)</td>
</tr>
<tr>
<td>EAZY, easy and accurate redshifts from Yale</td>
<td>Template based</td>
<td>Brammer et al. (2008)</td>
</tr>
<tr>
<td>LEPHARE</td>
<td>Template based</td>
<td>Arnouts et al. (2002) and Ilbert et al. (2006)</td>
</tr>
<tr>
<td>ZEBRA, Zurich extragalactic Bayesian redshift analyzer</td>
<td>Template based</td>
<td>Feldmann et al. (2006)</td>
</tr>
<tr>
<td>PHOTOZ</td>
<td>Template based</td>
<td>Bender et al. (2001)</td>
</tr>
</tbody>
</table>

Sanchez et al. (2014)
• Comparison tests of photo-z codes based on a set of metrics, primarily the following (with DES science requirements in parentheses):
 • Mean bias $z_{\text{phot}} - z_{\text{spec}}$
 • Scatter σ and $\sigma_{68} < 0.12$
 • $2\sigma < 10\%$ and $3\sigma < 1.5\%$ outlier fractions
 • Bias and σ of $z_{\text{phot}} - z_{\text{spec}}$ normalized by the photo-z error
 • N_{Poisson}: rms difference between photo-z and true z distributions, normalized by Poisson fluctuations

• Metrics applied after culling 10\% of galaxies in each method with largest photo-z errors, per science requirements

• Metrics also weighted to account for incompleteness of redshift samples, in order to be appropriate for an $i < 24$ DES galaxy sample
Example photo-z results, for DESDM neural network method

Top left: Photo-z vs. spectro-z

Bottom left: Photo-z – spectro-z, normalized by photo-z errors, and Gaussian fit

Bottom right: Photo-z redshift distribution compared to true redshift distribution

Plots generated using Python code of M. Carrasco
Example photo-z statistics, for DESDM neural network method

All statistics plotted vs. photo-z, in bins of redshift width = 0.1

Plots generated using Python code of M. Carrasco
Figure 5. z_{phot} versus z_{spec} scatter plot for all the codes analysed in Test 1 and listed in Table 3.

Sanchez et al. (2014)
Figure 6. σ_{68} versus bias for all the codes analysed in Test 1. The black
Photo-z comparison tests on DES SV data: Summary of results

- Most methods meet DES photo-z scatter requirement $\sigma_{68} < 0.12$
- All methods meet requirement that 2σ outlier fraction < 10%, and a few methods also meet 3σ outlier fraction < 1.5%, though most methods are close at < 2%

- However, challenge is meeting requirement on uncertainty of photo-z bias and scatter
Photo-z calibration errors and dark energy constraints

Dark energy constraint degradation < 10% for photo-z bias/scatter uncertainty in 0.001-0.01 range
Requires training set of 10^4-10^5 spectroscopic redshifts (Ma, Hu, & Huterer 2006)

Weak Lensing Tomography

Baryon Acoustic Oscillations

w_0 degradation contours

w_a degradation

w_0 degradation

w_a degradation

photo-z bias(x-axis) or scatter(y-axis) uncertainties

(from Z. Ma)
• See Newman et al. (2013) Snowmass report
• For dark energy constraints, we typically want to know the uncertainty in the mean redshift (within a “tomographic” (photo-z) redshift bin) at the level of
 \[\Delta(<z>) \sim 0.002 (1+z) \]
• Naively, given photo-z’s with \(\sigma_z = 0.1 \) (like DES), and \(N=10000 \) spectroscopic redshifts, we would get
 \[\Delta(<z>) = \frac{\sigma_z}{\sqrt{N}} = 0.001 \]
• However, this neglects the important challenges of
 • *Cosmic variance* (also called sample variance) due to large scale structure
 • *Incompleteness* of spectroscopic samples
Cosmic variance (or sample variance)

Sample variance requirements (Cunha et al. 2012) on spectro-z sample to calibrate photo-z’s, for weak lensing shear measurements of \(w \)

- Need 150 Magellan/IMACS-sized patches, well separated on the sky
- About 400 galaxies observed per patch
- 4 hour exposures, completeness like that of the VIMOS-VLT Deep Survey (VVDS) (assuming random failures)
- Need about 75 nights of Magellan time

![Graph showing sample variance requirements](image)

\[\sigma_{95}(|bias|) = 1.0 \]
Cunha et al. (2012) analysis is “direct,” “brute-force” calibration

There may be mitigation strategies possible (see Newman et al. 2013, p. 16) that reduce the requirements

Newman et al. (2013) quote the requirements instead as

- ~30000 redshifts, over >~ 15 widely separated fields, each ~0.1 deg in size
- Their Table 2-2 show more detailed observing estimates, still quite substantial

However, systematic incompleteness needs to be at <~ 0.1% for direct calibration purposes

Such a sample is more likely to be used to meet training set requirements
Spectroscopic incompleteness

Unlike SDSS at low redshifts/bright magnitudes, spectroscopic redshift samples at higher redshifts/fainter magnitudes (e.g., to $i = 24$ for DES) are incomplete (Newman et al. 2013 quote a 30-60% “secure” redshift failure rate for deep spectro-z surveys).

- We can correct for incompleteness by weighting in magnitude/color space as we did for the SV testing, but this assumes the incompleteness can be fully captured in observable properties like color and magnitude.

- For example, perhaps there is some hidden incompleteness as a function of true redshift that remains even after weighting.
For DES SV weak lensing shear analysis, despite spectroscopic incompleteness we nonetheless used weighted spectroscopic samples to estimate an uncertainty $\Delta(<z>) \sim 0.05$ in the mean redshift for the tomographic (photo-z) redshift bins used for the analysis (see Bonnett et al. 2016)

The SV uncertainties were comparable to statistical uncertainties and cosmic variance and were good enough for the SV-sized sample

For Y1 analysis we will need to improve to $\Delta(<z>) \sim 0.02$ and will instead

- Use highly-precise photo-z samples, which are also presumably much more complete, for validation

- Also incorporate “cross-correlation redshifts” to estimate redshift distributions $N(z)$ and to validate photo-z’s
DES SV weighted spectroscopic training and validation data, used for weak lensing shear analysis

TABLE I. The number of galaxies that are included in the matched spectroscopic catalogue are listed for each spectroscopic survey with the corresponding mean redshift and mean i band magnitude. Further details can be found in Appendix A.

<table>
<thead>
<tr>
<th>Spectroscopic survey</th>
<th>Count</th>
<th>Mean i</th>
<th>Mean z</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIPERS</td>
<td>7286</td>
<td>21.52</td>
<td>0.69</td>
</tr>
<tr>
<td>GAMA</td>
<td>7276</td>
<td>18.61</td>
<td>0.22</td>
</tr>
<tr>
<td>Zcosmos</td>
<td>5442</td>
<td>20.93</td>
<td>0.51</td>
</tr>
<tr>
<td>VVDS F02 Deep</td>
<td>4381</td>
<td>22.40</td>
<td>0.68</td>
</tr>
<tr>
<td>SDSS</td>
<td>4140</td>
<td>18.82</td>
<td>0.39</td>
</tr>
<tr>
<td>ACES</td>
<td>3677</td>
<td>21.73</td>
<td>0.58</td>
</tr>
<tr>
<td>VVDS F14</td>
<td>3603</td>
<td>20.61</td>
<td>0.49</td>
</tr>
<tr>
<td>OzDES</td>
<td>3573</td>
<td>19.85</td>
<td>0.47</td>
</tr>
<tr>
<td>ELG cosmos</td>
<td>1278</td>
<td>22.22</td>
<td>1.08</td>
</tr>
<tr>
<td>SNLS</td>
<td>857</td>
<td>21.09</td>
<td>0.55</td>
</tr>
<tr>
<td>UDS VIMOS</td>
<td>774</td>
<td>22.54</td>
<td>0.85</td>
</tr>
<tr>
<td>2dFGRS</td>
<td>725</td>
<td>17.52</td>
<td>0.13</td>
</tr>
<tr>
<td>ATLAS</td>
<td>722</td>
<td>18.96</td>
<td>0.35</td>
</tr>
<tr>
<td>VVDS spF10 WIDE</td>
<td>661</td>
<td>21.16</td>
<td>0.53</td>
</tr>
<tr>
<td>VVDS CDFS DEEP</td>
<td>544</td>
<td>22.05</td>
<td>0.62</td>
</tr>
<tr>
<td>UDS FORS2</td>
<td>311</td>
<td>23.80</td>
<td>1.25</td>
</tr>
<tr>
<td>PanSTARRS MMT</td>
<td>297</td>
<td>19.94</td>
<td>0.35</td>
</tr>
<tr>
<td>VVDS Ultra DEEP</td>
<td>264</td>
<td>23.71</td>
<td>0.88</td>
</tr>
<tr>
<td>PanSTARRS AAOmega</td>
<td>239</td>
<td>19.69</td>
<td>0.32</td>
</tr>
<tr>
<td>SNLS AAOmega</td>
<td>81</td>
<td>21.16</td>
<td>0.56</td>
</tr>
</tbody>
</table>

FIG. 5. The i-band magnitude distribution of the matched spectroscopic catalogue is shown in blue and the weak lensing sample is shown in red. The matched spectroscopic catalogue after weighting is shown as the grey histogram outline overlaying the weak lensing sample.
DES SV N(z) and mean redshifts in tomographic bins, used for weak lensing shear analysis

TABLE IV. The estimated mean of the three tomographic bins in the NGMIX sample of the four photo-z methods and the estimate of the weighted spectroscopic sample.

<table>
<thead>
<tr>
<th>z range</th>
<th>Spec (weighted)</th>
<th>ANNZ2</th>
<th>BPZ</th>
<th>SKYNET</th>
<th>TPZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.30–0.55</td>
<td>0.45</td>
<td>0.49</td>
<td>0.46</td>
<td>0.45</td>
<td>0.46</td>
</tr>
<tr>
<td>0.55–0.83</td>
<td>0.67</td>
<td>0.69</td>
<td>0.64</td>
<td>0.67</td>
<td>0.67</td>
</tr>
<tr>
<td>0.83–1.30</td>
<td>1.00</td>
<td>0.98</td>
<td>0.97</td>
<td>1.02</td>
<td>1.01</td>
</tr>
</tbody>
</table>

Estimate $\Delta \langle z \rangle \sim 0.05$ in tomographic bins

Bonnett et al. (2016)
Many-band photo-z samples for validation of DES photo-z’s

- **COSMOS 30-band (Laigle et al. 2016)**
 - Reaches DES depth, $dz/(1+z) \sim 0.007$
 - Overlaps deep DES SV/community data

- **ALHAMBRA 23-band (Molino et al. 2014)**
 - Reaches DES depth, $dz/(1+z) \sim 0.01-0.014$
 - Alhambra-4/COSMOS (0.25 deg2): overlaps deep DES SV/community data
 - Alhambra-2/DEEP2 (0.5 deg2): in DES Y3 footprint, could be done to full depth in Y4
 - Alhambra-8/SDSS (0.5 deg2): ~full depth already obtained in Y4

Figure 8: The top (bottom) panel shows the final weak lensing metric ($| \langle z_{\text{true}} \rangle - \langle z_{\text{desphot}} \rangle |$) values calculated using ML (BPZ) redshift routine. The error bars include both sample variance and magnitude re-sampled error components. The green dotted line shows the requirements on this metric value from the weak lensing group.
Cross-Correlation Redshifts

- Galaxies are correlated with each other, i.e., more likely to find a neighboring galaxy compared to random distribution
- Characterized by spatial (ξ) or angular (w) correlation functions
- Expect non-zero correlations between galaxies only if they are close in redshift (neglecting lensing magnification effects)
- Can therefore use angular "cross-correlations" between reference spectro-z sample and unknown photometric sample to infer redshift distribution of latter

from J. Helsby
Cross-Correlation Redshifts

- See Newman (2008) for the detailed derivation
- Here we show the simpler implementation of Menard et al. (2013), Rahman et al. (2015)
 - Redshift distribution of unknown photometric sample (“u”) is proportional to angular cross-correlation w_{ur} between it and the reference spectroscopic sample (“r”)
 $$
 \frac{dN_u}{dz} \propto w_{ur}(\theta, z_i)
 $$
 - The spectro-z sample is split into narrow redshift slices z_i and the angular cross-correlation is computed using the surface density of “u” objects at separation angle θ away from “r” objects with redshift z_i, relative to overall surface density of “u” objects
 $$
 w_{ur}(\theta, z_i) = \frac{\langle n_u(\theta, z_i) \rangle_r}{n_u} - 1
 $$
 - Then normalize the redshift distribution by integrating and equating the result to the total number of “u” objects:
 $$
 \int dz \frac{dN_u}{dz} = N_u
 $$
Figure 4.12: Reconstructed redshift distributions in the mock Stripe 82 for bins of photoz (denoted by gray bars and the photoz cut is written in each panel). Black data points represent reconstructed points via cross-correlation. The true distribution is denoted by the red line. The range of scales considered is $0.003 < \theta < 0.1$ degrees and the reconstruction bin width is $\Delta z = 0.08$. The black dotted line indicates $\phi(z) = 0$.

Cross-correlation redshift distributions for DES Stripe 82 simulations from J. Helsby thesis (2015)
Cross-Correlation Redshifts

- Key advantage is that the reference spectro-z samples for cross-correlations do not have to be complete nor be representative of the full photometric sample.
- But should ideally span the redshift range of the photometric sample.
- A systematic uncertainty lies in the redshift evolution of bias of photometric sample, if cannot be neglected.
- Newman et al. (2013) quote calibration requirement on cross-correlation spectro-z sample as “~100,000 objects over several hundred square degrees,” e.g. eBOSS or DESI surveys.
- Reference sample may even just have (more precise) photo-z’s, like the redMaGiC (Rozo et al. 2016) red galaxies we can select from DES over the full footprint, though currently limited to z <~ 0.9.
- We can supplement with quasar samples that extend to higher redshift.
Calibrating Redmagic w/Cross Correlations

- Some initial work on DES Redmagic x SDSS spectra, have been working more on studying SDSS Redmagic x SDSS spectra
- Fixed some bugs, working on optimizing scales, analyzing different samples in SDSS, starting to get error estimates
- Ongoing work, but results look promising that technique works, low # of spectra w/DES may be limiting
Y3 - potential (already available) spectroscopic samples for clustering-z in the high z regime

From M. Gatti

QSO: SDSS DR7, 2dFQSO

galaxies (all samples in the plot)

some of the largest samples available: PRIMUS, COSMOS, WIGGLEz, VIPERS, DEEP2, 3DHST
DES Y3 Photo-z Roadmap

From G. Bernstein and B. Hoyle

Input data
- DES Wide fluxes (MEMO)
- Red* galaxy catalogs
- Incomplete External “truth-z” fields (e.g. 2dF-QSO)
- DES fluxes for complete external “truth” fields (e.g. VVDS, SDSS)
- External Incomplete spectroscopic fields (e.g. VVDS, SDSS)

Z estimation
- dN/dz from: Template or ML or HB → calibrate with Clustering-z

validation
- Cov(dn/dz, observables)=0 in simulations?
- Samples from posterior P(dn/dz | z data)
- dn/dz consistent?
- Create complete subsamples via reweighting
- Re-run dn/dz estimator for subsample

Cosmology inference
- Cosmological Observables
- Cosmological MCMC
- Posterior P(dn/dz | data)
- Posterior dn/dz well sampled?
- Cosmology!