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’ Photometric Redshifts
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 Photometric redshifts (photo-z’s) are determined from the fluxes (or
magnitudes or colors) of galaxies through a set of filters

 May be thought of as redshifts from (very) low-resolution spectroscopy

 Photo-z’s are needed in particular when it’s too observationally
expensive to get spectroscopic redshifts (e.g., if galaxies are too many
or too faint)

 Well-calibrated photo-z’s are a key ingredient to obtaining cosmological
constraints in large photometric surveys like DES and LSST

Huan Lin, Photo-z’ and DES, U. Chicago, 26 Oct. 2016 2
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Photometric Redshifts

 The photo-z signal comes primarily from strong galaxy spectral features,
like the 4000 A break, as they redshift through the filter bandpasses
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Cluster Galaxy Colors vs. Redshift

/

) Pegose—-2 SED 1.0x10™ Mgcluster

L B B )

« Simulated cluster
galaxy colors (with
noise) vs. redshift,
based on one
particular early-type
galaxy spectral
energy distribution
(SED) evolution
model (from
“Pegase-2” library)
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 From plotted color
vs. redshift trends,
one can see how the
redshift (photo-z)
may be inferred from
the colors
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Simulated galaxy
colors (with noise)
vs. redshift from the
“DESS5yr’” mock
galaxy catalog

A set of 4 empirical
“CWW?” (Coleman,
Wu & Weedman 1980)
SEDs (red curves)
used to model the
galaxy population

Can see it’s harder to
estimate photo-z’s
when full galaxy
population is present



Slicing through multicolor space:
Connolly et al. (1995)

Example showing how it is
possible to disentangle
redshifts from galaxy colors/
magnitudes in multicolor space

FIG. 1. The distribution of galaxies within the three-color space U, B,, and R is shown for the sample of galaxies derived from the spectroscopic redshift
surveys of Koo & Kron. The redshift of each galaxy is encoded by the color of its data point, blue corresponds to z=0 and red to z=0.5. The color table is
set so that each color maps onto an interval of 0.1 in redshift. Panels (a), (b), and (d) show three orthogonal perspectives of the data. Panel (c) shows a

; a g ree-color space 1s determined by its redshift, luminosity, and spectral type. For a given
redshlft the data form thick sldbs in the UB R space. Redshifting the galaxies moves these slabs through the color space (due to dimming and K corrections).




Photo-z Methods
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 Two basic categories
« Machine learning/training set/empirical methods
« Template-fitting methods
* For lists of methods, see, e.g.,
« Hildebrandt et al. (2010): “PHAT: Photo-z Accuracy Testing”

« Zheng & Zhang (2012) SPIE review (http://adsabs.harvard.edu/abs/2012SPIE.
8451E..342)

« Sanchez et al. (2014): DES Science Verification (SV) photo-z comparison
testing; later slides

Huan Lin, Photo-z’ and DES, U. Chicago, 26 Oct. 2016 7
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* Machine learning/training set/empirical methods

« Use “training set” to derive a relation between redshift and magnitudes/
fluxes/colors/etc.

« May also output p(z), the full redshift probability distribution function (PDF),
in addition to “point” estimates

* Rely on training set, which can often be incomplete/unrepresentative of full
photometric data

« Simple examples:
* Polynomial fit (Connolly et al. 1995)
* Neural networks (Collister & Lahav 2004)

Huan Lin, Photo-z’ and DES, U. Chicago, 26 Oct. 2016 8
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« Example: quadratic polynomial fit (e.g. Connolly et al. 1995)
- Adopt a quadratic polynomial relation between redshift z and magnitudes
g,n,i
z=a0+al*g+a2*r+al3”*i
+a4 *g*g+ad *r'r+ a6 *i’i
+a7 *g*r+a8*g*it+ad *ri
« Derive best-fit polynomial coefficients a0, a1, a2, ..., a9 from training set
data with spectroscopic redshifts
 Photo-z’s then come from applying best-fit relation to photometric data

« Training set and photometric data should be observed by the same
telescopel/instrument/filters, ideally under the same conditions (exposure
time, seeing, etc.)

Huan Lin, Photo-z’ and DES, U. Chicago, 26 Oct. 2016



Photo-z Methods
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« Example: artificial neural network (from Oyaizu et al. 2008)
I = -0 = ) activation 1
Zj wiiUj 0[ f(Il) function, e_g.f(li) = 1_}_—1
e i
m1l
Node1 [O1 j
input W]. Il
magnitudes Node 3 O3 3 I3 Output z
w
m?2
Node 2 02
Derive weights w; by minimizing score function E = %Z <Zsipec _ Z:;)z

Fic. 3.—Simple FFMP network with three layers and configuration 2:1:1. The inputs are the two magnitudes, m; and m,. Ix denotes the input from node x, and Ox is the
corresponding output of this node. The weights w associated with each connection are found by training the network using training and validation sets (see text).

« The neural network here is really just a complex function of the input magnitudes

+ To avoid “overfitting,” minimization steps are done on training set but final set of
weights are chosen to be those that perform best on independent “validation set”

* Multiple networks may also be examined to optimize photo-z solution

Huan Lin, Photo-z’ and DES, U. Chicago, 26 Oct. 2016 10
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Photo-z Methods

« Template-fitting methods

Use a set of SED templates (from real data or from models)

Calculate fluxes/magnitudes using redshifted templates and filter
throughputs

Obtain best-fitting galaxy redshift and template type, and also p(z)

Rely on template library, which may not fully span the range of galaxy types
in photometric sample

Examples:
* HyperZ (Bolzonella et al. 2000)
« BPZ (Benitez 2000, Coe et al. 2006)
* LePhare (Arnouts et al. 2002, llbert et al. 2006)

Huan Lin, Photo-z’ and DES, U. Chicago, 26 Oct. 2016 11
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Fig.S5. Each panel corresponds to one of the four CWW templates
(Ell, Sbc, Scd, Irr) and one starburst template (Kinney et al. 1996). The
points correspond to the flux of each galaxy redshifted to the rest-frame
using the spectroscopic redshifts. The green dashed lines are the initial
SEDs and the red solid lines are the optimised SEDs which are the out-
put of the procedure described in Sect. 4.2. The starburst template is not
optimised.

Example of galaxy
template library
based on real data

Use of a small
number of templates
(with interpolation
between them), can
give “ok” photo-z’s

libert et al. (2006)
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Figure 1. Ultraviolet to mid-infrared SED of NGC 6240 (top panel), along with some of the GALEX, SDSS, 2MASS, and Spitzer images that were used to constrain 1 4
and verify the SED. The horizontal bar denotes an angular scale of 1’. In the top panel, the observed and model spectra are shown in black and gray respectively, while
the photometry used to constrain and verify the spectra is shown with red dots.
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Fig.4. Example of best-fitted templates on multi-colour data for a
galaxy at zs = 0.334. The solid black points correspond to the ap-
parent magnitudes in the u*, B,g’,V,r',R,i’,1,7 filters from the left to
right respectively. The solid line corresponds to a template redshifted at
zp = 2.85 and the dotted line at zp = 0.24. The enclosed panel is the
associated Probability Distribution Function (PDFz).

lllustration of template
fitting method

True redshift is z=0.334

Also shows confusion
between low redshift
“Balmer break” and high
redshift “Lyman break”
features (at about 5000A
observed wavelength)

Degeneracy can be
broken with more data
(here, more IR data) or
by using priors (see next
slides)

libert et al. (2006)
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« Example: Bayesian photometric redshifts (BPZ; Benitez 2000)

« Bayes’ Theorem (redshift z, colors C, magnitudes m, types T)
likelihood

prior
posterior

pelmp(Cla) ]
e Bz mp(C] 2

« Sum over posterior probability distributions for different galaxy
types to get final redshift PDF

p(Z | Ca mO) = ; p(Za T | C3 mO) oC ; p(Za T | mO)p(C I Z, T)

p(z| C, mg) =

« Using a flat (i.e., constant) prior is the same as maximum likelihood

Huan Lin, Photo-z’ and DES, U. Chicago, 26 Oct. 2016 16
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F16. 2—Example of the main probability distributions involved in BPZ for a galaxy at z = 0.28 with an Irr spectral type and I ~ 26, to which random
photometric noise is added. From top to bottom: (a): Likelihood functions p(C| z, T for the different templates used in § 4. Based on ML, the redshift chosen
for this galaxy would be zy,; = 2.685, and its spectral type would correspond to a spiral. (b): Prior probabilities, p(z, T' | m,), for each of the spectral types
(see text). Note that the probability of finding a spiral spectral type with z > 2.5 and a magnitude I = 26 is almost negligible. (c) Probability distributions,
p(z, T|C, my) o p(z, T | my)p(C |z, T), that is, the likelihoods in the top plot multiplied by the priors. The high-redshift peak due to the spiral has disappeared,
although there is still a small chance of the galaxy being at high redshift if it has a Irr spectrum, but the main concentration of probability is now at low
redshift. (d) Final Bayesian probability, p(z| C, my) = X1 p(z, T | C, m,), which has its maximum at z, = 0.305. The shaded area corresponds to the value of
Pas» Which estimates the reliability of z, and yields a value of ~0.91.

Benitez (2000)
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’ DES photometric redshifts
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 DES will rely on photometric redshifts (photo-z’s), i.e., redshifts
determined from photometric imaging data, in primarily the 5 DES filters
grizY (plus u band and near-IR JHK as available)

* Well understood photo-z’s and photo-z errors are vital for deriving
accurate cosmology constraints from the different DES dark energy
probes

« Large and deep samples of galaxies with spectroscopic redshifts and/or
highly precise photo-z’s, combined with DES photometry, are used to
train and calibrate (validate) DES photo-z measurements

Huan Lin, Photo-z’ and DES, U. Chicago, 26 Oct. 2016 18



DES Science Verification (SV)
spectroscopic redshift training set fields
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* ugrizY imaging was obtained during DES Science Verification (SV; Nov 2012 —
Feb 2013) on 4 fields with deep spectroscopic redshift training set data

 VVDS Deep 02hr (in DES supernova X3 deep field)
* VVDS Deep redshift sample to I,5 < 24

« CDFS (in DES supernova C3 deep field)
* VVDS Deep redshift sample to I, < 24
 ACES redshift sample to i <= 23
* 0OzDES Deep redshift sample to i < 21

« VVDS Wide 14hr
« VVDS Wide redshift sample to l,5 < 22.5

« COSMOS (courtesy of DECam community program, Pl A. Dey)
« zCOSMOS Bright redshift sample to l,g < 22.5
« VVDS Wide 10hr redshift sample to l,5 < 22.5

* Plus additional bright redshift samples in above fields from SDSS-l/Il, SDSS-III/
BOSS, and 2dFGRS

Huan Lin, Photo-z’ and DES, U. Chicago, 26 Oct. 2016 19



’ Photo-z comparison tests on DES SV data:
Standardized redshift samples
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 Goal to compare, test, and optimize photo-z codes used in the DES
Photo-z Working Group

- “Standardized” training and validation galaxy redshift data sets
assembled for use by all codes

« “Main”: DES main survey depth photometry

« 5859 (training set) + 6381 (validation set) high-confidence
redshifts

 “Deep”: typically 3x exposure of single supernova deep field visit

« 7249 (training set) + 8358 (validation set) high-confidence
redshifts

« Standardized set of DECam system throughput curves also assembled
for use

Huan Lin, Photo-z’ and DES, U. Chicago, 26 Oct. 2016 20
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Primary SV training sets

Sanchez et al. (2014)

Photo-z comparison tests on DES SV data:
Training sets
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Figure 4. g- and i-magnitude distributions for the full, calibration and
weighted calibration sample. The difference between the full and the cali-
bration samples is apparent, the latter being significantly brighter. After ap-
plying the weighting procedure described in Lima et al. (2008), the weighted
calibration distributions agree very well with the corresponding DES-SV
distributions.
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Photo-z comparison tests on DES SV data:
Photo-z codes
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Table 3. List of methods used to estimate photo-z’s. Code type and main references are given.

Code

Type

Reference

DESDM, artificial neural network

ANNz, artificial neural network

TPZ, prediction trees and random forest
RVMzZ, relevance vector machine

NIP-KNNZ, normalized inner product nearest neighbor

ANNz2, machine-learning methods
ARBORZ, boosted decision trees

SKYNET, classification artificial neural network

BPZ, Bayesian photometric redshifts
EAZY, easy and accurate redshifts from Yale
LEPHARE

ZEBRA, Zurich extragalactic Bayesian redshift analyzer

PHOTOZ

Training based
Training based
Training based
Training based
Training based
Training based
Training based
Training based
Template based
Template based
Template based
Template based
Template based

Oyaizu et al. (2008a)

Collister & Lahav (2004)

Carrasco Kind & Brunner (2013, 2014)
Tipping (2001)

de Vicente et al., in preparation

Sadeh et al., in preparation

Gerdes et al. (2010)

Bonnett (2013) and Graff et al. (2013)
Benitez (2000) and Coe et al. (2006)
Brammer et al. (2008)

Arnouts et al. (2002) and Ilbert et al. (2006)
Feldmann et al. (2006)

Bender et al. (2001)

Sanchez et al. (2014)

Huan Lin, Photo-z’ and DES, U. Chicago, 26 Oct. 2016
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Photo-z comparison tests on DES SV data:
Comparison test metrics
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« Comparison tests of photo-z codes based on a set of metrics, primarily the
following (with DES science requirements in parentheses):

« Mean bias z(phot) — z(spec)

« Scatter o and oy (< 0.12)

« 20 (<10%) and 30 (< 1.5%) outlier fractions

- Bias and o of z(phot) — z(spec) normalized by the photo-z error

Npoisson: 'Ms difference between photo-z and true z distributions, normalized
by Poisson fluctuations

« Metrics applied after culling 10% of galaxies in each method with largest photo-z
errors, per science requirements

« Metrics also weighted to account for incompleteness of redshift samples, in order
to be appropriate for an i < 24 DES galaxy sample

Huan Lin, Photo-z’ and DES, U. Chicago, 26 Oct. 2016 23
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Example photo-z results,
for DESDM neural network method

DESDM neural network

|| — p=-0.041, 0=1.093

® o DESDM neural network

-4 _‘2
AZ/UA:

Top left: Photo-z vs. spectro-z

Bottom left: Photo-z — spectro-z, normalized
by photo-z errors, and Gaussian fit

Bottom right: Photo-z redshift distribution
compared to true redshift distribution
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~phot

~phot

DES SV photo-z vs.
1 spectro-z scatter plot

. Sanchez et al. (2014)
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Figure 5. zphor Versus zgpec scatter plot for all the codes analysed in Test 1 and listed in Table 3.
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’ Photo-z comparison tests on DES SV data:
Summary of results
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* Most methods meet DES photo-z scatter requirement og5 < 0.12

* All methods meet requirement that 2o outlier fraction < 10%, and a few
methods also meet 30 outlier fraction < 1.5%, though most methods are
close at < 2%

 However, challenge is meeting requirement on uncertainty of photo-z
bias and scatter

Huan Lin, Photo-z’ and DES, U. Chicago, 26 Oct. 2016 28
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Photo-z calibration errors and
dark energy constraints
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Dark energy constraint degradation < 10% for
photo-z bias/scatter uncertainty in 0.001-0.01 range
Requires training set of 104-10° spectroscopic redshifts (Ma, Hu, & Huterer 2006)

Weak Lensing Tomography
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Huan Lin, Photo-z’ and DES, U. Chicago, 26 Oct. 2016
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Photo-z calibration challenges
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« See Newman et al. (2013) Showmass report

 For dark energy constraints, we typically want to know the uncertainty in the
mean redshift (within a “tomographic” (photo-z) redshift bin) at the level of

A(<z>) ~ 0.002 (1+2)

* Naively, given photo-z’s with o, = 0.1 (like DES), and N=10000 spectroscopic
redshifts, we we would get

A(<z>) =0, /| VN =0.001
* However, this neglects the important challenges of

« Cosmic variance (also called sample variance) due to large scale structure

« Incompleteness of spectroscopic samples

Huan Lin, Photo-z’ and DES, U. Chicago, 26 Oct. 2016 30



Cosmic variance (or sample variance)
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Sample variance requirements (Cunha et al. 2012) on spectro-z sample to
calibrate photo-z’s, for weak lensing shear measurements of w

1000 ————————

LB |

go 160 320 640x10° : « Need 150 Magellan/
2 IMACS-sized patches,
1/4 d992 1 well separated on the
1/8 deg -
5 sky
1/32 deg

20

10

 About 400 galaxies
observed per patch

* 4 hour exposures,
completeness like that
of the VIMOS-VLT Deep
Survey (VVDS)

] (assuming random

failures)

* Need about 75 nights
of Magellan time

T

Number of patches

100

Ggs(|bias|) = 1.0

10 100 1000 10000
gals/patch 31



Cosmic variance (or sample variance)

DARK ENERGY
SURVEY

« Cunha et al. (2012) analysis is “direct,” “brute-force” calibration

« There may be mitigation strategies possible (see Newman et al. 2013, p. 16) that
reduce the requirements

* Newman et al. (2013) quote the requirements instead as
« ~30000 redshifts, over >~ 15 widely separated fields, each ~0.1 deg in size

« Their Table 2-2 show more detailed observing estimates, still quite
substantial

 However, systematic incompleteness needs to be at <~ 0.1% for direct calibration
purposes

« Such a sample is more likely to be used to meet training set requirements

Huan Lin, Photo-z’ and DES, U. Chicago, 26 Oct. 2016 32



Spectroscopic incompleteness
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« Unlike SDSS at low redshifts/bright magnitudes, spectroscopic redshift samples
at higher redshifts/fainter magnitudes (e.g., to i = 24 for DES) are incomplete
(Newman et al. 2013 quote a 30-60% “secure” redshift failure rate for deep
spectro-z surveys)

« We can correct for incompleteness by weighting in magnitude/color space as we
did for the SV testing, but this assumes the incompleteness can be fully
captured in observable properties like color and magnitude

 For example, perhaps there is some hidden incompleteness as a function of true
redshift that remains even after weighting

Huan Lin, Photo-z’ and DES, U. Chicago, 26 Oct. 2016 33



DES photo-z calibration/validation
for weak lensing shear analysis
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« For DES SV weak lensing shear analysis, despite spectroscopic incompleteness
we nonetheless used weighted spectroscopic samples to estimate an
uncertainty A(<z>) ~ 0.05 in the mean redshift for the tomographic (photo-z)
redshift bins used for the analysis (see Bonnett et al. 2016)

« The SV uncertainties were comparable to statistical uncertainties and cosmic
variance and were good enough for the SV-sized sample

* For Y1 analysis we will need to improve to A(<z>) ~ 0.02 and will instead

« Use highly-precise photo-z samples, which are also presumably much more
complete, for validation

« Also incorporate “cross-correlation redshifts” to estimate redshift
distributions N(z) and to validate photo-z’s

Huan Lin, Photo-z’ and DES, U. Chicago, 26 Oct. 2016 34



DES SV weighted spectroscopic training and validation data,

used for weak lensing shear analysis

TABLE 1. The number of galaxies that are included in the
matched spectroscopic catalogue are listed for each spectroscopic
survey with the corresponding mean redshift and mean i band
magnitude. Further details can be found in Appendix A.

Spectroscopic survey Count Mean i Mean z
VIPERS 7286 21.52 0.69
GAMA 7276 18.61 0.22
Zcosmos 5442 20.93 0.51
VVDS F02 Deep 4381 22.40 0.68
SDSS 4140 18.82 039
ACES 3677 21.73 0.58
VVDS F14 3603 20.61 0.49
OzDES 3573 19.85 0.47
ELG cosmos 1278 22.22 1.08
SNLS 857 21.09 0.55
UDS VIMOS 774 22.54 0.85
2dFGRS 725 17.52 0.13
ATLAS 722 18.96 0.35
VVDS spF10 WIDE 661 21.16 0.53
VVDS CDFS DEEP 544 22.05 0.62
UDS FORS2 311 23.80 1.25
PanSTARRS MMT 297 19.94 0.35
VVDS Ultra DEEP 264 23.71 0.88
PanSTARRS AAOmega 239 19.69 0.32
SNLS AAOmega 81 21.16 0.56

Bonnett et al. (2016)

Spectroscopic sample
Weak lensing sample
1 Weighted spectroscopic sample Lrl

Normalized Density

18 19 20 21 22 23 24 25
7 band magnitude

FIG. 5. The i-band magnitude distribution of the matched
spectroscopic catalogue is shown in blue and the weak lensing
sample is shown in red. The matched spectroscopic catalogue
after weighting is shown as the grey histogram outline overlaying
the weak lensing sample.



DES SV N(z) and mean redshifts in tomographic bins,
used for weak lensing shear analysis

DARK ENERGY
SURVEY

TABLE IV. The estimated mean of the three tomographic bins
in the NGMIX sample of the four photo-z methods and the estimate
of the weighted spectroscopic sample.

Estimate A(<z>) ~ 0.05 in
tomographic bins

Spec
Z range (weighted) @ ANNZ2  BPZ  SKYNET  TPZ Bonnett et al. (2016)
0.30-0.55 0.45 0.49 0.46 0.45 0.46
0.55-0.83 0.67 0.69 0.64 0.67 0.67
0.83-1.30 1.00 0.98 0.97 1.02 1.01
Test-2b Full Validation
0.3 <z, <0.55  n, =4150 0.55 <z, <0.83  n,, =4221 0.83 <z, <1.3 n,, =2324
Z-spec
——— ANNZ2
—— BPZ

R —— SkyNet
: + A

00 02 04 06 08 10 12 14 16 1800 02 04 06 08 10 12 14 16 1800 02 04 06 08 10 12 14 16 18
Redshift (z)
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Many-band photo-z samples
for validation of DES photo-z’s

DARK ENERGY
SURVEY

« COSMOS 30-band (Laigle et al. 2016)
 Reaches DES depth, dz/(1+z) ~ 0.007
* Overlaps deep DES SV/community data

« ALHAMBRA 23-band (Molino et al. 2014)
* reaches DES depth, dz/(1+z) ~ 0.01-0.014
* Alhambra-4/COSMOS (0.25 deg”2): overlaps deep DES SV/community data
+ Alhambra-2/DEEP2 (0.5 deg”2): in DES Y3 footprint, could be done to full depth in Y4
« Alhambra-8/SDSS (0.5 deg”2): ~full depth already obtained in Y4

Lof o 'E'h' T ] Nuv
' u
£o0s : f\\ p M\
N ! .
é 0.61- ! | Laigle et al. (2016)
z I
S 041 ! |
| -h"
= 0.2 | : ch2
|L 1 J ch3
0.0 | " ) A ] . . M | I o
2103 5.10° 10 5.10 105 yHSC  ch4
A(A)
Figure 2. Transmission curves for the photometric bands used. The effect of atmosphere, telescope, camera optics, filter, and detector are included. Note that for 37

clarity the profiles are normalized to a maximum throughput of one; therefore, the relative efficiencies of each telescope and detector system are not shown.
Intermediate and narrow bands are not represented, but the region of the spectrum covered by these bands is marked by dashed lines.
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Figure 8: The top (bottom) panel shows the final weak lensing metric (| <
Zirue > — < Zdesphot > |) values calculated using ML (BPZ) redshift routine.
The error bars include both sample variance and magnitude re-sampled error
components. The green dotted line shows the requirements on this metric value
from the weak lensing group.

Current, preliminary
DES Y1 validation
results for weak
lensing mean
redshift bias metric,
from B. Hoyle
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Cross-Correlation Redshifts

DARK ENERGY
SURVEY

* Galaxies are correlated with
each other, i.e., more likely to
find a neighboring galaxy
compared to random
distribution

é »  Characterized by spatial (§)
or angular (w) correlation

6 Q functions
6 « Expect non-zero correlations
between galaxies only if they

é é 6 are close in redshift

(neglecting lensing
Q é magnification effects)
é é » Can therefore use angular

6 “cross-correlations”
6 between reference spectro-z

Q 6 sample and unknown
photometric sample to infer
é 6 @ redshift distribution of latter
6 from J. Helsby

é object with spectroscopic redshift Q photometric object 39

increasing
redshift




Cross-Correlation Redshifts

DARK ENERGY
SURVEY

« See Newman (2008) for the detailed derivation

 Here we show the simpler implementation of Menard et al. (2013),
Rahman et al. (2015)

* Redshift distribution of unknown photometric sample (“u”) is proportional to angular
cross-correlation w,, between it and the reference spectroscopic sample (“r”

dNu/dZ X wur(ea Zi)

+ The spectro-z sample is split into narrow redshift slices z, and the angular cross-
correlation is computed using the surface density of “u” objects at separation angle 0
away from “r” objects with redshift z,, relative to overall surface density of “u” objects

wur(e, Zi) _ (nu(e, Zi))r 1

Ry

« Then normalize the redshift distribution by integrating and equating the result to the
total number of “u” objects:

/ dz =N,
dz

Huan Lin, Photo-z’ and DES, U. Chicago, 26 Oct. 2016 40
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Figure 4.12: Reconstructed redshift distributions in the mock Stripe 82 for bins of photoz
(denoted by gray bars and the photoz cut is written in each panel). Black data points
represent reconstructed points via cross-correlation. The true distribution is denoted by the
red line. The range of scales considered is 0.003 < € < 0.1 degrees and the reconstruction
bin width is Az = 0.08. The black dotted line indicates ¢(z) = 0.

Cross-
correlation
redshift
distributions for
DES Stripe 82
simulations from
J. Helsby thesis
(2015)
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Cross-Correlation Redshifts

DARK ENERGY
SURVEY

« Key advantage is that the reference spectro-z samples for cross-correlations do
not have to be complete nor be representative of the full photometric sample

« But should ideally span the redshift range of the photometric sample

« A systematic uncertainty lies in the redshift evolution of bias of photometric
sample, if cannot be neglected

« Newman et al. (2013) quote calibration requirement on cross-correlation spectro-z
sample as “~100,000 objects over several hundred square degrees,” e.g. eBOSS
or DESI surveys

 Reference sample may even just have (more precise) photo-z’s, like the redMaGiC
(Rozo et al. 2016) red galaxies we can select from DES over the full footprint,
though currently limited to z <~ 0.9

 We can supplement with quasar samples that extend to higher redshift

Huan Lin, Photo-z’ and DES, U. Chicago, 26 Oct. 2016 42



Cross-correlation redshift results for
I SDSS and DES redMaGiC samples
from R. Cawthon

Ross Cawthon
University of Chicago

dN/dz

Calibrating Redmagic w/Cross Correlations

* Some initial work on DES Redmagic x SDSS spectra, have been

working more on studying SDSS Redmagic x SDSS spectra

* Fixed some bugs, working on optimizing scales, analyzing

different samples in SDSS, starting to get error estimates

* Ongoing work, but results look promising that technique

works, low # of spectra w/DES may be limiting
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/AR

Y3 - potential (already available) spectroscopic
samples for clustering-z in the high z regime

From M. Gatti
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<’/ DES Y3 Photo-z Roadmap

DARK ENERGY
SURVEY

From G. Bernstein and B. Hoyle

Cosmology
inference

Cosmological
Observables

Input data Z estimation validation

Cov(dn/dz,
observables)=0
in simulations?

DES Wide
fluxes (MEMO)

dN/dz from:

Template or
Red" galaxy ML or HB w
catalogs — calibrate SO UC Cosmological
. posterior MCMC Cosmology!
with P(dn/dz | z data)
Clustering-
Incomplete
External “truth-z"
fields (e.g. Posterior
B | 2dF-QSO) P(dn/dz | data)
DES fluxes for .
complete / dn/dz Posterior
external “truth” consisten dn/dz well
fields (Alhambra, / t? sampled?
B etc.)

Create
complete

subsamples

via reweighting

incomplete
spectroscopic
fields (e.g. VVDS,
SDSS)

dn/dz

consisten
t?

Re-run dn/dz
estimator for J

subsample

Gary: Y3 plan




