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Today

* Cosmic Microwave Background
* Big Bang Nucleosynthesis



Assignments

This week: read Hawley and Holcomb,
Chapter 12 .

Today: Essay 3 due on HH, Chapter 13.
Optional re-write of Essay 1 on Chap. 10 due.
Next Friday: Essay 4 due on HH, Chapter 12.



The Big Bang Theory

The Universe has been expanding from a hot,
dense beginning 13.7 billion years ago.

This paradigm provides a successtul
framework for interpreting all cosmological
observations to date.

Three Classical Observational Pillars of the Big
Bang:

» Hubble's law of expansion

« Cosmic Microwave Background

» Big Bang Nucleosynthesis



Atomic Recombination

* At temperatures above T~3000 deg, ordinary
matter consisted of nuclei and electrons:
ionized plasma. Photons scatter frequently
with charged particles, establishing thermal
equilibrium: Planck Blackbody spectrum.

* When the expanding plasma cooled to
T~3000 deg (when the Universe was 380,000
years old, and about 1/1000% its present size),
CMB photons were no longer energetic
enough to knock electrons out of H atoms.

* Electrons and protons “recombined” into
neutral Hydrogen atoms at that time.



Recombination and Decoupling

Prior to H recombination, CMB photons interacted
rapidly with charged electrons in the plasma.

Once recombination occurred, the scattering rate of
photons dropped precipitously:

Photon Decoupling (Last Scattering)

CMB photons have travelled freely since then. Maps
of the CMB temperature provide a snapshot of the
Universe when it was 380,000 years old.

Cosmic Weather report: Universe was "foggy’ before
decoupling, clear since then.



Before and After Recombination
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Briet History of the Universe

Dark Energy
Accelerated Expansion
Afterglow Light
Pattern Dark Ages Development of
400,000 yrs. Galaxies, Planets, etc.

1st Stars
about 400 million yrs.

Big Bang Expansion

13.7 billion years



COBE Satellite (Cosmic Background Explorer)
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Wilkinson Microwave Anisotropy Probe (WMAP)
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Planck Satellite
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Planck Satellite




CMB Temperature Maps
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Snapshot of the Universe when it was 380,000 years old.
Temperature varies by only 0.00001 deg across the sky.




Planck CMB Temperature Map
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This map encodes information about cosmological parameters (density of

baryons and matter, curvature of space, etc). How do we extract that
information?




Image and Its Power Spectrum I
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Image and Its Power Spectrum II
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Two Images with Same Power Spectrum

Left image contains much more information than is encoded
in its power spectrum. For the right image, the power
spectrum contains all the information.



Angular Power Spectrum of the CMB

* Theory of the origin of these temperature
fluctuations (which we'll discuss later) predicts that
all the information in the temperature map is
contained in the power spectrum.



Spherical Multipoles

Spherical
analogue of
Fourier transform




Topographic Map of the Earth

By adding up multipole patterns we can make any map






Angular Power Spectrum of Earth's Surface Elevation
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Where does this Harmonic Structure Come From?

Gravity
® @




Sound Waves in the Early Universe

Before H recombination: After H recombination:

— Universe is ionized. — Universe is neutral.

— Photons provide — Photons can travel freely
enormous pressure and past the baryons.
restoring torce. — Phase of oscillation at

— Photon-baryon recombination affects
perturbations oscillate as late-time amplitude.

sound waves.
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Sound Waves

e Each initial overdensity (in
dark matter & baryons) is an
overpressure that launches a
spherical sound wave.

* This wave travels outward at
the speed of sound ¢, in the

photon-baryon fluid, which is
57% of the speed of light.

* Pressure-providing photons
decouple at recombination,
and wave stalls. Photons
travel to us from these
spheres.

Eisenstein



Anisotropies in the CMB

Temperature map of
the cosmic microwave
background radiation

® There is a characteristic angular scale, ~1 degree on the
sky, set by the distance sound waves can travel just before

neutral atoms form: sound horizon distance s=c.t,,.



Where does this Harmonic Structure Come From?

Gravity
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General Relativity: space can be globally curved




Seeing the Sound Horizon

a If universe is closed, b If universe is flat, ¢ If universe is open,
“hot spots” appear “hot spots” appear “hot spots” appear
larger than actual size actual size smaller than actual size
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CMB & The Baryon Density

Around the time of photon decoupling (recombination of
atomic H), the ‘outward’ pressure of the photons pushing
against the “inward’ compression of the gravity of the
baryons leads to a set of coherent oscillations (like an
oscillating guitar string) in the density and pressure: these are
sound waves (aka acoustic waves), with a characteristic
fundamental frequency of oscillation, plus higher harmonics
(overtones).

Compression = Heat the gas = Hot spot on the sky
Rarefaction - Cool the gas = Cold spot on the sky



Low Baryons High Baryons
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Theoretical dependence of CMB

;  anisotropy on the baryon density
— 0.039

— 0.045
— 0.051

(Temperature Fluctuation)
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Logarithmic view of Cosmic History
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Cosmic History

*  Going back in time from the present toward
the Big Bang, first significant epoch we
reached was Hydrogen recombination/
photon decoupling at t ~ 380,000 years (T ~
3000 deg).

» Continuing back, the next major epoch is that

of Big Bang Nucleosynthesis, at t ~ 3 minutes
(T ~ 10”7 deg).



Big Bang Nucleosynthesis

« Origin of the Light Elements: Helium, Deuterium,
Lithium,...

* When the Universe was younger than about 1 minute
old, with a Temperature above ~ 1 billion degrees,
atomic nuclei (e.g., He* nucleus = 2 neutrons + 2
protons bound together) could not survive: instead
the baryons formed a soup of protons & neutrons.

* As the Temperature dropped below this value (set by
the binding energy of light nuclei), protons and
neutrons began to fuse together to form bound
nuclei: the light elements were synthesized as the
Universe expanded and cooled.



Nucleosynthesis reactions

 Sequence of nuclear fusion reactions, starting with
neutrons and protons, produces light elements in different
amounts.

* Fusion reactions release energy (in form of photons &
neutrinos) and thereby provide the energy that makes stars
shine and Hydrogen bombs explode. (Controlled fusion
may be an effectively limitless source of energy in the
future: use seawater.) In fusion reactions, lighter nuclei
combine to form heavier (generally more stable) nuclei.

* In fission reactions (which power nuclear plants and atomic
bombs), very heavy nuclei (e.g., Uranium) are split apart
into lighter (more stable) nuclei, again releasing energy.
The most stable nucleus is Iron.



Nuclear Binding Energy
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Light Element Abundances: Predictions

Stage 1:t < 1 sec, kT > 1 MeV (T > 1010 deq)

Universe at this stage consists of protons (p) (Hydrogen nuclei),
neutrons (n), electrons, neutrinos, thermal background radiation
(photons). Nuclei destroyed by radiation.

Weak and electromagnetic interactions keep all these particles
in thermal equilibrium.

Neutrons are slightly heavier than protons:

A=m,c*-my,? =13 MeV
Since weak interactions interconvert n and p, as the Universe
cools there will be fewer neutrons than protons

n/p =n./n, = exp(-A/kT)



Light Element Abundances: Predictions

Stage 2:t ~ 1 sec, kT ~ 0.75 MeV

At this stage, the rate of weak interactions n €<= p drops
below the expansion rate of the Universe: neutrons &
protons stop converting into each other. These interactions
‘freeze out’.

When this happens, there are about 6 protons for every
neutron:

n/p=1/6

and this ratio stops decreasing (except for an occasional
neutron decay).
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Light Element Abundances: Predictions

Stage 3:t ~ 2.5 minutes, kT ~ 0.08 MeV (T ~ 107 deq)

At this stage, the energy of the ambient radiation
(photons) is low enough for neutrons and protons to fuse
into nuclei of Deuterium (D = H?=1 neutron+1 proton).
Before this time, the weakly bound D is destroyed.

Subsequent reactions produce Tritium (T=H3=1 proton+2
neutrons), He3, Helium# (2 neutrons + 2 protons), and
Lithium” (3 protons, 4 neutrons). Heavier nuclei are not

produced (they are produced much later in massive stars).
By this time, due to neutron decay, n/p ~ 1/7.



Fusion of Hydrogen to Helium

Primary source of energy in a star like our sun.



Light Element Abundances: Predictions

Stage 3:t ~ 2.5 minutes, kT ~ 0.08 MeV (T ~ 107 deq)

By this time, due to neutron decay, n/p ~ 1/7.
He# is the most stable (most strongly bound) light nucleus,
so essentially all the available neutrons end up in He*.

Since each He* nucleus contains 2 neutrons+2 protons, for
every He?* nucleus there are 12 remaining protons = H
nuclei. He* mass fraction is therefore (since m,, = 4m)

Y =my/(Mmy.+tmy)=4/(4+12) = Va
25% of the baryonic mass ends up in Helium, essentially
all the rest in Hydrogen, plus trace amounts of Deuterium
and Lithium.



Light Element Abundances: Evolution
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BBN predicted abundances baryon density Qh*
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Element Abundances:
observations

Measure light element abundances in very old stars (Li),
in the interstellar medium, in ionized gas clouds in other

galaxies (He), and in Quasar absorption lines (D).

Challenge: find primordial material that has not been
processed through stars, which burn lighter into heavier
elements through fusion reactions, changing their relative
abundances.



Hydrogen emission and absorption lines
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BBN abundances baryon density Qh? h = Hy/(100 km/sec/Mpc)
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BBN & the Baryon Density

Light element abundances are concordant (except for
Lithium) if the baryon density of the Universe is in the range

0.021<Q h? < 0.025

Since the Hubble parameter h=H,/100 km/sec/Mpc=0.7, this

yields
0.043<Q, < 0.051

This determination is in excellent agreement with the
amplitude of the “acoustic peaks’ in the CMB temperature
anisotropy from the Planck satellite, establishing validity of
the Big Bang model back to ~1 second after the birth of the
Universe. Next week we will discuss pushing even turther
back in time, to a tiny fraction of a second.



