9/5/13 This file specifies the targets the Kepler TTV group recommends for an extended Kepler mission using two reaction wheels (aka Kepler-II). It accompanies the white paper, "A Habitable Zone Census via Transit Timing and the Imperative for Continuing to Observe the Kepler Field," by Fabrycky, Ford, Payne, Steffen, Ragozzine, Mazeh, Lissauer, and Welsh. The calculations were done by Fabrycky, in order to understand how many targets would be usefully observed for each of the science campaigns advocated in that paper. For each KOI that is relevant for a campaign, we found what extra noise component would make additional observations only marginally useful (numerically defined below). The Kepler-II noise N was computed as the quadrature sum of the instrumental precision and the main mission's 6-hour CDPP as reported by Borucki+11 and Batalha+13. The Kepler-II signal S was based on a 2-year mission, i.e. smaller by sqrt(2) relative to the main mission's reported total S/N for each transiting planet. This yielded a S/N as a function of instrumental precision. We chose limiting S/N values which would be marginally useful for each campaign, and then solved for the limiting instrumental precision, given below as "prec". For the High Signal-to-Noise TTV project (defining detailed dynamical models to fill out the portraits of planetary systems), we chose S/N=20 as the limit. The reason for such a high bar is that we need to see features in the curves which determine complex dynamical models, and we need enough S/N to produce detailed interpretations. If there are multiple transiting planets with TTV, we chose the one with the higher S/N. For the Planet Pairs with Sinusoidal TTV project (determining the phase and amplitude of signals, which will imply planet masses and eccentricities), we required that both planets had S/N>3. This is so that both signals could be measured accurately to constrain the sinusoidal parameters, helping the interpretation. For the Long-Period TTV project (finding resonant architectures, beyond the bias of multiply-transiting planets), we required the planet have a TTV amplitude that could be measured to 3-sigma with Kepler-II, and have a TTV period which is >1000 days (i.e., yet unconstrained). To determine the S/N, we used the amplitude already reported based on a long-period sinusoid (Mazeh et al. 2013 table 3). The signal S was simply the amplitude reported there. The noise N was the median transit timing error reported there, divided by the square root of the number of transits recorded. Then Kepler-II was assumed to have a noise higher by the photometric noise ratio times sqrt(2) (the sqrt(2) is due to 2 years of assumed operation rather than 4 years). If Kepler-II's signal implied S/N > 3 of the TTV amplitude detection, the limiting precision (S/N=3) was recorded and is given below. This is required so that the TTV timescale can be meaningfully constrained. For the Long Orbital Period project (confirming the existence of habitable-zone and more distant transiting planets), we required the depth to be equal to the limiting precision. This is slightly different than a S/N cut based on the 6-hour CDPP, as many of these transits have durations longer than 6 hours. It is right on the edge of detectability, so that all systems possibly showing another transit will be observed. The recommended targets are as follows. A KOI (short numbers) or KIC (long numbers) should be included in the target list if the instrumental CDPP on 6-hour timescales for Kepler-II is lower than the "prec" value. The campaign is with reference to the above discussion and the white paper's four categories. KOI/KIC prec(ppm) campaign 84 355 high S/N TTV 94 1587 high S/N TTV 103 301 high S/N TTV 117 530 sinusoidal TTV 119 318 high S/N TTV 134 4396 high S/N TTV 137 588 high S/N TTV 142 533 high S/N TTV 148 425 high S/N TTV 152 596 high S/N TTV 157 324 high S/N TTV 168 170 high S/N TTV 227 311 high S/N TTV 232 287 sinusoidal TTV 244 167 high S/N TTV 248 351 high S/N TTV 250 581 high S/N TTV 255 216 sinusoidal TTV 262 363 high S/N TTV 274 228 sinusoidal TTV 274 326 long P_TTV 277 206 high S/N TTV 314 136 sinusoidal TTV 314 127 high S/N TTV 315 1117 long P_TTV 351 654 high S/N TTV 377 690 high S/N TTV 401 69 sinusoidal TTV 410 364 long P_TTV 448 436 high S/N TTV 448 6966 long P_TTV 500 479 high S/N TTV 520 234 long P_TTV 523 313 high S/N TTV 525 1306 long P_TTV 542 425 sinusoidal TTV 564 615 high S/N TTV 564 790 long P_TTV 609 1272 long P_TTV 620 8162 sinusoidal TTV 620 2574 high S/N TTV 638 1422 long P_TTV 707 831 sinusoidal TTV 707 222 high S/N TTV 738 193 high S/N TTV 738 817 long P_TTV 760 536 long P_TTV 775 227 high S/N TTV 806 8425 high S/N TTV 829 103 high S/N TTV 841 1874 high S/N TTV 870 391 high S/N TTV 872 419 high S/N TTV 880 793 high S/N TTV 880 3366 long P_TTV 884 1611 high S/N TTV 884 24005 long P_TTV 886 61 high S/N TTV 886 648 long P_TTV 898 475 high S/N TTV 902 1817 high S/N TTV 902 4245 long P_TTV 904 83 high S/N TTV 904 3226 long P_TTV 935 725 sinusoidal TTV 935 327 high S/N TTV 952 390 high S/N TTV 984 636 high S/N TTV 989 1300 long P_TTV 993 129 sinusoidal TTV 1061 511 long P_TTV 1102 69 high S/N TTV 1203 371 long P_TTV 1236 124 sinusoidal TTV 1236 253 high S/N TTV 1236 1287 long P_TTV 1241 101 high S/N TTV 1270 221 high S/N TTV 1271 2252 high S/N TTV 1426 357 high S/N TTV 1426 1663 long P_TTV 1459 6421 long P_TTV 1474 521 high S/N TTV 1563 50 high S/N TTV 1574 399 high S/N TTV 1582 175 high S/N TTV 1589 135 high S/N TTV 1598 585 sinusoidal TTV 1707 101 sinusoidal TTV 1751 930 long P_TTV 1832 362 sinusoidal TTV 1840 37 high S/N TTV 2038 346 sinusoidal TTV 2162 335 sinusoidal TTV 2194 217 sinusoidal TTV 2291 618 long P_TTV 2410 474 sinusoidal TTV 2672 192 sinusoidal TTV 2672 80 high S/N TTV 2672 80 high S/N TTV 2768 192 sinusoidal TTV 3083 95 sinusoidal TTV 2162635 4185 long P_orbit 3230491 8333 long P_orbit 3634051 898 long P_orbit 3644071 6669 long P_orbit 3756801 1323 long P_orbit 3962440 3312 long P_orbit 4760478 4830 long P_orbit 4902202 1331 long P_orbit 5437945 2215 long P_orbit 5437945 2646 long P_orbit 5536555 372 long P_orbit 5652983 1048 long P_orbit 5857656 637 long P_orbit 5871985 2155 long P_orbit 5966810 1144 long P_orbit 6342758 17004 long P_orbit 6432345 916 long P_orbit 6766634 2608 long P_orbit 6867155 20322 long P_orbit 7199906 468 long P_orbit 7363829 6453 long P_orbit 7619236 5522 long P_orbit 7672940 23457 long P_orbit 7811397 12844 long P_orbit 7826659 1980 long P_orbit 8012732 5513 long P_orbit 8505215 1814 long P_orbit 8559644 3498 long P_orbit 8800954 2908 long P_orbit 8813698 10538 long P_orbit 8827930 12711 long P_orbit 8891318 802 long P_orbit 9147029 2755 long P_orbit 9214713 17349 long P_orbit 9413313 7435 long P_orbit 9425139 4007 long P_orbit 9958387 1671 long P_orbit 10024862 2051 long P_orbit 10287723 1415 long P_orbit 10460629 764 long P_orbit 10525077 2803 long P_orbit 10593626 492 long P_orbit 10850327 830 long P_orbit 10917043 1226 long P_orbit 11026582 970 long P_orbit 11027624 1958 long P_orbit 11030711 2355 long P_orbit 11075279 5109 long P_orbit 11342550 9050 long P_orbit 11442793 8444 long P_orbit 11442793 3776 long P_orbit 12356617 5332 long P_orbit