Universe in a box: simulating formation of cosmic structures

Andrey Kravtsov

Department of Astronomy & Astrophysics

Center for Cosmological Physics (CfCP)

University of Chicago

http://astro.uchicago.edu/~andrey/talks/ http://cfcp.uchicago.edu/lss/

Galaxies

Two Micron All Sky Survey Image Mosaic: Infrared Processing and Analysis Center/Caltech & University of Massachusetts

Two Micron All Sky Survey Image Mosaic: Infrared Processing and Analysis Center/Caltech & University of Massachusetts

Galaxy Clusters

Supergalactic plane Supergalactic plane Sight Ascension

The Local Supercluster

Gerard de Vaucouleurs 1918- 1995

G. de Vancoulous

Galaxies of the Infrared Sky Near and far structures in the local universe are color-coded by galaxy brightness

Two Micron All Sky Survey Image Mosaic: Infrared Processing and Analysis Center/Caltech & University of Massachusetts

Large- scale structure of the Universe

as seen
by the
CfA survey

On even larger scales... (billions of light years)

Structures in the Universe (Very) Brief History

graphics from Wayne Hu (background.uchicago.edu/~whu)

FORMATION OF STRUCTURES

Content of the Universe:

all existing components (protons, neutrons, hypothetical dark matter) contribute to gravity and can influence the rate with which the Universe expands

The contribution of each component is measured in units of critical density: $\Omega_i = \rho / \rho_{crit}$

$$\rho_{\rm crit} = 3H_0^2/8\pi G = 1.8788 \times 10^{-29} h^2 \,{\rm g \, cm^{-3}}$$

Content of the Universe: observational probes

□ Cosmic Microwave Background ripples

physics causing 10 ⁵ deviations from the uniform black body temperature is very well understood in a given model. Observable statistics of fluctuations (e.g., angular correlation function or power spectrum) depend on cosmological parameters, including matter and energy content.

□ Large- scale structure of the Universe

galaxies, galaxy clusters, filaments

□ Standard "candles"

any object whose intrinsic brightness is known or can be deduced from observations without using distance. SNIa are currently the best cosmological standard candles known

□ Standard rulers (systems with known intrinsic size)

Cosmic Microwave Background (CMB) Temperature Anisotropies

Wilkinson Microwave Anistropy Probe (WMAP) satellite results circa February 2003

High redshift supernovae type Ia

SNAP satellite proposal

Cosmic Pie

Computer Simulations: How to set up and where to begin?

I If the content of the Universe is assumed, theory predicts
the statistical properties of inhomogeneities in matter
distribution

these predictions are used to set up initial conditions of the simulations

□ Simple analytic predictions are accurate only while inhomogeneities are small (<10% fluctuations with respect to the mean density of the Universe)

simulations are initialized at an epoch before analytic predictions break down, during the so-called "Dark Ages"

□ Numerical simulations are used to follow formation of structures and make accurate predictions at later epochs where analytic calculations break down

Computer Simulations: How do we model?

gravity is by far the strongest force on the large scales. gravitational interactions are modelled using Newton's laws

Other forces may need to be included depending on the composition of the Universe and scales considered

ordinary matter, the baryons, experiences pressure forces if compressed to sufficiently high densities, these "hydrodynamic" forces are included in simulations that include baryons

We all live in

Cosmological Redshift as a measure of distance and time

Computer Simulations: discretizing matter and space

Memory and CPU speed limit the number of volume elements and particles that we can simulate

in the standard theories, 10^{6} - 10^{62} dark matter particles are expected in a cubic Megaparsec

current computers can handle only up to a billion particles

---> need to discretize

Hardware

Supercomputers at National Centers and Labs (e.g., the National Center for Supercomputer Applications - NCSA)

www.ncsa.uiuc.edu

Lots and lots of storage...

Many Many Lines of Software

```
subroutine Split ( Level , mtot )
        purpose: splits cells marked to split
        input : Level - level to process
output : mtot - # of cells just split
        include "a_def.h"
include 'a_tree.h'
include 'a_control.h'
#
         integer mtot, Level
        integer idcell
reml*8 e_kin, e_ip
         real*8 whvar(nhvar), wvar1, wvar2, wvar3
         dimension iPyr (nchild, 3) / interpolation pyramid vertices
         data iPyr / 1, 2, 1, 2, 1, 2, 1, 2,
                           3, 3, 4, 4, 3, 3, 4, 4,
5, 5, 5, 5, 6, 6, 6, 6 /
       &
        Warning! The loops below are to be executed SERIALLY
        IF ( Level .eq. MinLevel ) THEN
  do ic1 = 1 , ncell0
  if ( vnw(1,ic1) .gt. wsplit ) then
  ires = iSplitCell ( ic1 )
  if ( ires .eq. nil ) then
    mtot = mtot + 1
  ices = isplit(ic1)
                     i00 = i0ctCh(ic1)
                     v_p = hvar(3,ic1)**2 +
                                 hvar(4,ic1)**2 +
hvar(5 ic1)**2
```

```
p_0
p_1
ul_0
ur_0
                = p_1
= p2
= ul1
                = ur1
      devi
                = abs (p2 - p_1) / (p2 + p_1)
      sta(1) = devi
      dev
                 = max ( dev , devi )
  endif
end if
iter = iter + 1
if ( iter .le. maxit .and. dev .gt. eps ) go to 1
if ( dev .gt. eps ) then
  write(*,'(1x,''Riemann_l solver iteration failure'')')
   stop
end if
State at x/t=0
  u = 0.5 * (ul_0 + ur_0)

ind_r = int (0.9 - sign (onehalf, u))

rho_s = ind_r * (str(1) - stl(1)) + stl(1)

u_s = ind_r * (str(2) - stl(2)) + stl(2)

p_s = ind_r * (str(3) - stl(3)) + stl(3)

bgam_s = ind_r * (str(4) - stl(4)) + stl(4)

qam_s = ind_r * (str(5) - stl(5)) + stl(5)
```

redshift = 10; 13 billion years ago

redshift = 5; 12.3 billion years ago

redshift = 3; 11.4 billion years ago

redshift = 1; 7.7 billion years ago

redshift = 0; today

Baryons: sloshing, shocking, cooling

From darkness to light: the messy physics of galactic kitchen

To model formation of galaxies we need to deal with "gastrophysics"...

Towards simulating realistic galaxies

