An Astronomer’s View of Climate Change
by Donald C. Morton
Herzberg Astronomy and Astrophysics Programs
National Research Council of Canada

Outline
- IPCC Reports
- Observations and Predictions
- Chaos, Global Temperature
- Historical Changes in Climate
- Astronomical Influences
- Will the climate be warmer or cooler in the near future?

University of Chicago 2014 Jun 9
Symposium honouring Don York and Ed Kibblewhite
“Human influence has been detected in warming of the atmosphere and ocean, in changes in the global water cycle, in reductions in snow and ice, in global mean sea level rise and changes in some climate extremes. This evidence for human influence has grown since AR4. It is extremely likely that human influence has been the dominant cause of the observed warming since the mid-20th century.”
Typical Statements about Climate Change

"We can no longer ignore the facts: Global warming is unequivocal, it is caused by us and its consequences will be profound. But that doesn’t mean we can’t solve it." Andrew Weaver in Canada, 2013 Sep 28 in the *Globe and Mail* newspaper.

"We know without a doubt that gases we are adding to the air have caused a planetary energy imbalance and global warming, already 0.8 degrees Celsius since pre-industrial times. This warming is driving an increase in extreme weather from heat waves to droughts and wild fires and stronger storms . . ." James Hansen in the United States, 2013 Dec 6 in a CNN broadcast.

"We are at risk of pushing our climate system toward abrupt, unpredictable, and potentially irreversible changes with highly damaging impacts." 2014 Mar 17 in *What We Know, Report by the American Association for the Advancement of Science.*
Eminent Scientists Can Be Wrong

William Thomson, Lord Kelvin
1824 - 1907

Sir Arthur Stanley Eddington
1882 - 1944
Global Average Surface Temperature Anomaly (°C)

CO₂ Concentration (ppm)

Antarctic Ice Core
Mauna Loa

U. S. National Oceanic and Atmospheric Administration with earlier CO₂ data from an ice core from the Law Dome, Antarctica

http://www.climate.gov/
Already in 2009 the change in slope of the temperature curve was a concern.

Knight *et al.*, 2009, *Bull. Amer. Meteor. Soc.*, 90 (8), S1 – S196

“Do global temperature trends over the last decade falsify climate predictions?”

“Near-zero and even negative trends are common for intervals of a decade or less in the simulations, due to the model’s internal climate variability. The simulations rule out (at the 95% level) zero trends for intervals of 15 yr or more, suggesting that an observed absence of warming of this duration is needed to create a discrepancy with the expected present-day warming rate.”
The Trace Absorbing Gases Abundances from the NOAA air sampling network

- Carbon Dioxide
- Nitrous Oxide
- Methane
- CFC-12
- CFC-11
- HCFC-22
- HFC-134a
Outward radiation from $\tau \approx 1$ proportional to σT^4 in troposphere
Model Predictions and Observations from IPCC Report 2013 Fig. 11.9

RCP 4.5 = Representative Concentration Pathway 4.5 for a modest rise in minor absorbing gases corresponding to a 1.3% increase in total solar irradiance.
The Climate Models

1) Backwarming by CO$_2$ etc must occur, but H$_2$O much more important.

2) Model makers assumed temperature rise primarily due to measured increase of CO$_2$ etc, ignoring possible natural causes.

3) But predicted T rise due to CO$_2$ etc. half to a third that observed prior to 1998.

4) To account for observed T rise, models required positive feedback - hotter air holds more water vapour which absorbs more radiation.

5) Amount of feedback an uncertain quantity that could be negative due to clouds reflecting more sunlight.

6) Feedback introduced through parameters that define a model - essentially determined to fit observed T rise.

6) If no feedback, doubling CO$_2$ would increase T by about 1°C, which is not alarming. (Proposed limit is 2°C.)

7) Present temperature plateau requires review of models.
Possible Causes of the Temperature Plateau

1) Natural variability; a base of 50 to 100 yr is needed for climate change (Solomon 2014).

3) Overestimate of effects of absorbing gases in some models (IPCC2013).

4) Inadequate inclusion of clouds in the models (IPCC2013).

5) The effects of other liquid and solid aerosols (IPCC2013).

6) Cooling by aerosols from recent modest volcanoes (Santer et al. 2014).

7) A decreasing concentration of stratospheric water vapour (Solomon et al. 2010).

9) A deep ocean sink for the missing heat (Trenberth & Fasullo 2013).

10) Less absorption by CFC’s (Lu 2013, Estrada et al. 2013).

11) Climate unpredictable due to chaos (Rial et al. 2004).

12) Reduced solar activity - more cosmic rays, weaker solar wind and UV (Svensmark 1998, Voiculescu et al. 2013, Gray et al. 2010).
At Least 12 Proposed Causes of the Temperature Plateau

- admission that present models are not reliable.
- possible explanations of part of the temperature rise from 1977 to 1998.
- revised models needed to predict future temperatures.
- predictions to be checked with observations for a decade or more.
Chaos Theory and the Butterfly Effect

• Meteorologist E. N. Lorenz investigated equations for convection and associated turbulence.

• Many dynamical systems are fundamentally chaotic.

• A small change in initial conditions can produce large differences later.

• Predictions from numerical weather models become unstable after a week or two.

• Weather modeling is refined by repeated comparisons with observations.

• IPCC 2013: “There are fundamental limits to just how precisely annual temperatures can be projected because of the chaotic nature of the climate system.”

• No indication of how long climate models are valid, but graphs plot predictions to 2100!
Temperature History from Greenland Ice Core
inferred from $^{18}\text{O}/^{16}\text{O}$ ratio

Graph by J. Storrs Hall posted on http://wattsupwiththat.com/ 2011 Jul 7
from data by Ally, R. B. 2000, Quaternary Sci. Rev. 190, 213
Schnidejoch 2756 m
A new route in 2003 over the Swiss Alps between Lenk and Sion
Schnidejoch Archaeology

Handle of Wooden Bowl 4500 - 4300 BC

Roman Ornaments 0 – 100 AD

Bronze Jewelery 1800 – 1600 BC
Astronomical Effects

Solar Luminosity = Total Solar Irradiance

Solar Activity – cosmic rays, solar wind, UV radiation
Earlier data reduced to recent TIM observations which had better control of scattered light.
Stability of the Solar Luminosity

Hydrostatic Equilibrium

Thermal Equilibrium

Virial Theorem \[2E_{\text{thermal}} = - E_{\text{gravitational}} \]
International sunspot number R_i: monthly mean and 13-month smoothed number

Spotless Days during Solar Minima

SILSO graphics (http://sidc.be) Royal Observatory of Belgium 01/05/2014
Schwabe discovered 11-year cycle in 1843. Wolf began systematic counting in 1848. Spörer and Maunder noted scarcity of spots and aurorae from 1645 to 1715.

Little Ice Age: 1430 – 1850, Coldest intervals: 1450 – 1500, 1600 – 1700

Our Cosmic Ray Shield

Diagram by NASA
Cosmic-Ray count from neutron monitor at Sodankyla Geophys. Obs., Oulu, Finland

Solar 10.7 cm radio flux, Dominion Radiophysical Observatory, Canada
Hypothesis by Svensmark and Coauthors
National Space Institute, Technical University of Denmark

1) When the solar magnetic field is weak, more cosmic rays reach the earth.

2) Ionization by secondary galactic CR (10-20 GeV) assists in the formation of H$_2$SO$_4$ - water aerosols ($r \sim 2 - 3$ nm).

3) Some of these grow into cloud condensation nuclei ($r > 50$ nm) which enhance formation of low clouds.

4) Low altitude clouds reflect sunlight letting the earth cool.

Laboratory tests at CERN with a pion beam support step 2.

Other Influences Solar Activity on Climate

1) Variations of solar wind and interplanetary magnetic field affect electrical state of our atmosphere and hence cloud cover.

2) Variation in UV irradiance - much more than total irradiance. During low activity less O$_3$ is formed and less UV flux is absorbed in stratosphere.
Cosmogenic Nuclides Provide a Historical Record of the Galactic Cosmic Ray Flux

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Half life (yr)</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>n + 14N \rightarrow p + 14C</td>
<td>5730</td>
<td>12C</td>
</tr>
<tr>
<td>Spallation of 14N, 16O \rightarrow 10Be</td>
<td>1.51×10^6</td>
<td>8Be</td>
</tr>
</tbody>
</table>

14C + O$_2$ \rightarrow 14CO$_2$, which circulates in the atmosphere for about 5 yr before photosynthesis deposits 14C in annual tree rings.

10Be attaches to aerosols that precipitate after about a year or two. In arctic and antarctic regions the snow becomes compressed into annual layers of ice.
Anticorrelation of Cosmic Ray Flux with Sunspot Number

Little Ice Age 1430 - 1850

Stalagmite from Hoti Cave in northern Oman

Timescale from Th/U

Δ^{14}C from tree rings

δ^{18}O a proxy for rainfall intensity from monsoon

Neff et al. 2001, Nature 411, 290
Conclusions

1) The climate models have predicted rising global temperatures that actually have been constant since 1998.

2) Climate models can be useful to test hypotheses and understand physical processes, but are unreliable for policy.

3) Climate depends on chaotic processes that may be impossible to model.

4) Temperatures could rise further as we add more CO$_2$ and similar gases or they could decrease as suggested by the present weak solar activity.

5) The science is not settled and we do not know how to control climate.

6) Beware of science by consensus and the denigration of skeptics. Science progresses by skepticism and comparison of theory and models with experiments and observations.