

D. Q. Lamb (U. Chicago)

Swift

"Astrophysical Sources of High-Energy Particles and Radiation" Torun, Poland, 21 June 2005

X-Ray Flashes

Sakamoto et al. (2004)

Sakamoto et al. (2005)

Dependence of Burst Spectral Peak Energy (E_{peak}) on Isotropic-Equivalent Energy (E_{iso})

HETE-2 results, when combined with earlier *Beppo*Sax and optical follow-up results:

- Provide strong evidence that properties of XRFs, X-ray-rich GRBs ("XRRs"), and GRBs form a continuum
- Suggest that these three kinds of bursts are closely related phenomena
- □ Key result: approximately equal numbers of bursts per logrithmic interval in most observed properties (S_E, E^{obs}_{peak}, E_{iso}, E_{peak}, etc.)

As most extreme burst population, XRFs provide severe constraints on burst models and unique insights into Structure of GRB jets GRB rate Nature of Type Ic supernovae

- X-ray photons may be produced by the hot cocoon surrounding the GRB jet as it breaks out and could produce XRF-like events if viewed well off axis of jet (*Meszaros et al. 2002, Woosley et al.* 2003).
- "Dirty fireball" model of XRFs posits that baryonic material is entrained in the GRB jet, resulting in a bulk Lorentz factor Γ << 300 (*Dermer et al. 1999, Huang et al. 2002, Dermer and Mitman* 2003).
- At the opposite extreme, GRB jets in which the bulk Lorentz factor Γ >> 300 and the contrast between the bulk Lorentz factors of the colliding relativistic shells are small can also produce XRF-like events (*Mochkovitch et al. 2003*).
- ❑ A highly collimated GRB jet viewed well off the axis of the jet will have low values of E_{iso} and E_{peak} because of the effects of relativistic beaming (Yamazaki et al. 2002, 2003, 2004).

Lamb, Donaghy, and Graziani (2005)

Uniform Jet

- $E_{\gamma}^{inf} = (1 \cos \theta_{jet}) E_{iso}$ $= \Omega_{jet} E_{iso}$
- *E*_{iso} = isotropic-equivalent radiated energy
- E_{γ}^{inf} = inferred radiated energy

Distributions of E_{iso} and E_v

Ghirlanda, Ghisselini, and Lazzati (2004); see also Frail et al. (2001), Bloom et al. (2003)

Ghirlanda, Ghisselini, and Lazzati (2004)

Universal Jet: Differences due to different viewing angles θ_{view} Variable Opening Angle (VOA) Jet: Differences due to *different jet opening angles* θ_{jet}

Uniform Jet Gaussian/Fisher Jet Power-Law Jet

Rossi, Lazzati, Salmonson, and Ghisellini (2004)

Phenomenological Burst Jets

Jet Profile	Jet Opening Angle
Uniform	Variable
Gaussian/Fisher	Variable
Power-Law	Universal
Uniform	Universal
Gaussian/Fisher	Universal
Uniform	Variable + Relativistic Beaming
Gaussian/Fisher	Variable + Relativistic Beaming
Power-Law	Universal + Relativistic Beaming
Uniform	Universal + Relativistic Beaming
Gaussian/Fisher	Universal + Relativistic Beaming

- □ Universal jet model that produces *narrow distribution* in one physical quantity (e.g., E^{inf}_{γ}) produces *narrow distributions* in all other physical quantities (e.g., E_{peak} , E_{iso} , etc.)
- □ And *vice versa*: Universal jet model that produces *broad distribution* in one physical quantity (e.g., E_{iso}) produces *broad distributions* in all other physical quantities (e.g., E_{peak} , E^{inf}_{γ} , etc.)
- □ But this is not what we observe what we observe is are broad distributions in E_{peak} and E_{iso} , but a relatively narrow distribution in E_{γ}^{inf}
- Variable opening angle (VOA) jets can do this because they have an additional degree of freedom: the distribution of jet opening angles θ_{jet}

DQL, Donaghy, and Graziani (2004)

BeppoSAX bursts

HETE-2 bursts

Uniform Variable Opening-Angle Jet vs. Power-Law Universal Jet

DQL, Donaghy, and Graziani (2005)

Uniform Variable Opening-Angle Jet vs. Power-Law Universal Jet

DQL, Donaghy, and Graziani (2005)

VOA uniform jet can account for *both* XRFs and GRBs
Universal power-law jet can account for GRBs, but not *both* XRFs and GRBs – because distributions in *E*_{iso} and *E*^{obs}_{peak} are too narrow

DQL, Donaghy, and Graziani (2005)

Jet Profile	Jet Opening Angle
Uniform	riable
Gaussian/Fisher	Variable
Power-Law	
Uniform	cfavoreu
Gaussian/Fisher	Universal
Uniform	Variable + Relativistic Beaming
Gaussian/Fisher	Variable + Relativistic Beaming
Power-Law	Universal + Relativistic Beaming
Uniform	Universal + Relativistic Beaming
Gaussian/Fisher	Universal + Relativistic Beaming

- □ Relativistic beaming produces low E_{iso} and E_{peak} values when uniform jet is viewed outside θ_{jet} (see Yamazaki et al. 2002, 2003, 2004)
- Relativistic beaming *must* occur
- Therefore very faint bursts w. E_{peak}^{obs} in UV and optical must exist
- However, key question is whether relativistic beaming dominates

Yamazaki, loka, and Nakamura (2004)

Uniform VOA Jet + Relativistic Beaming

Donaghy (2005)

 $\Gamma = 300$

Expected Behavior of Afterglow in Relativistic Beaming Model

Observed Behavior of Afterglow

Swift/XRT observations of XRF 050215b show that the X-ray afterglow:

- Does not show increase followed by rapid decrease
 Rather, it joins smoothly onto end of burst
 It then fades slowly
 S_{after}/S_{burst} ~ 1
- □ Jet break time > 5^d (> 20^d) → θ_{iet} > 25^o (35^o) at z = 0.5

X-Ray Flashes vs. GRBs: <u>HETE-2 and Swift (BAT)</u>

Even with the BAT's huge effective area (~2600 cm²), only HETE-2 can determine the spectral properties of the most XRFs.

Conclusions

- As most extreme burst population, XRFs provide unique information about structure of GRB jets
 - Variable opening angle jet models favored; universal jet models disfavored; relativistic beaming models strongly disfavored
 - □ Absence of relativistic beaming \rightarrow Γ > 300
- Confirming these conclusions will require
 - prompt localization of many more XRFs
 - \Box determination of E_{peak}
 - \Box determination of t_{iet} from observations of X-ray afterglows
 - □ determination of redshifts *z*
- □ HETE-2 is ideally suited to do *the first two*, whereas Swift (with E_{min} ~ 15 keV and 15 keV < E < 150 keV) is not; Swift is ideally suited to do *the second two*, whereas HETE-2 cannot
- Prompt Swift XRT and UVOT observations of HETE-2 XRFs can therefore greatly advance our understanding of XRFs – and therefore all bursts