Computer Physics Communications 69 (1992) 306-316
North-Holland

Computer Physics
Communications

Rigorous charge conservation for local electromagnetic

field solvers

John Villasenor

Jet Propulsion Laborarory, 4800 Oak Grove Dr., Pasadena, CA 91109, USA

and

Oscar Buneman

Department of Electrical Engineering, Stanford University, Stanford, CA 94305-4055, USA

Received 23 January 1991; in final form 12 June 1991

In this paper we present a rigorous method for finding the electric field in two-and-one-half and three dimensional
electromagnetic plasma simulations without resorting to computationally expensive transforms. A finite grid interpretation
of the divergence equation V-J = —dp /01 is offered which allows the current density and thus new local electric and
magnetic field strengths to be determined directly from knowledge of charge motion.

1. Introduction

Field equations are most commonly solved by
transform methods in simulations. The ready
availability of efficient transform codes cncour-
ages one to use such “spectral” methods. So does
our custom to describe, interpret, and understand
field phenomena in terms of waves.

However, transform methods are “global™: all
of the field information, near and far, contributes
to each single field harmonic. Computers of the
immediate future demand minimization of data
paths and therefore call for local methods. Even
with hypercube topology, ideally suited to FFT
implementation, the physical length of single data
links will ultimitely become the bottleneck. Meth-
ods which allow one to update fields purely from
local data should therefore receive renewed at-
tention and it is gratifying to note that two of
Maxwell’s equations, when cast into finite differ-

ence form, alrecady cxpress such local updating
explicitely, namely:

B
— = —TXE, (1)
at
oF
— =FxB-—J, (2)
ot

(using units such that e = I, uw = 1, and ¢ = 1). By
staggering B-component and E-component data
suitably in both space and time (“leapfrogging™),
these equations provide new data from old, using
present values only immediately to the east, west,
north, and south (see fig. 5), and above and below
in three dimensions [1,7].
By contrast, the two divergence equations,

V-E=p, (

oY)
~—

V-B=0, (4)
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require distant information (spatial boundary
conditions) for their solution, particularly in the
case of static conditions. Coupled with VX E =0
and V X B = J, they then lead to elliptic equations
for the components (or for the associated poten-
tials). Transform methods, or other global, direct
non-iterative poisson solvers would therefore
seem inevitable.

Fortunately, the dynamic problem of field evo-
lution can be solved by means of the evolution-
ary, local equations (1) and (2) alone, after impos-
ing the divergence equations (3) and (4) only as
initial conditions. One readily checks that V- B
remains zero if it was so initially and that this is
rigorously true also for the simple space-and-
time-centered finite difference versions of 9/0t,
curl and div that go with the data arrangement
shown in fig. 5. One also checks that V- E re-
mains p by virtue of the conservation condition

dp
a—t-_-—V'J (5)

on the charge density.

What we shall be concerned with in this paper
is to make sure that the finite-difference imple-
mentation of the charge conservation law (5) is
also consistent with the finite difference version
of 8/8t, div and curl as applied to E and B. In
other words, if we generate E time step after
time step from the finite-difference versions of
(1) and (2) and calculate V- E, the resulting p
should satisfy (5) exactly in this finite-difference
version.

Enforcing the initial conditions on the diver-
gences of E and B at time ¢t = 0 now remains as a
once-only task. Given the initial p (and some
boundary conditions), one can either use a trans-
form or other non-local method for this first step,
or one can let p evolve from zero to its initial
state transiently in a certain number of prelimi-
nary steps, starting with source-free E and B that
satisfy the boundary conditions. Such E and B
are in many cases known analytically.

Experiments performed on a personal com-
puter by one of us have shown that the static field
is approached satisfactorily in transience pro-
vided (1) that the charge distribution p is switched

on gently and (2) that enough steps are taken to
let the initial radiation escape across the compu-
tational boundary. (Non-reflecting boundary con-
ditions, such as Lindman’s [5] become important
here.)

In a two-dimensional N X N grid this number
of steps is of the order N with a computational
effort of order N2 per step. The transform effort
is of the order N? log, N. However, since the
local Maxwell algorithm is so much simpler than
even the most elegant transform algorithm, the
transient, local method wins over the global
transform method even on present-day computers
on which the length of data paths is not yet an
issue.

In the first proposal for solving the field prob-
lem locally (Buneman [1]) strict charge conserva-
tion was to be achieved with a technique called
“zero-order current weighting”. In this method, a
charge crossing a cell boundary furnishes an im-
pulse of current proportional to the value of the
charge. While charge is conserved, the current
discontinuities introduced generate large amounts
of noise. The nature of this noise is discussed in
Birdsall and Langdon [2]. Morse and Nielson [3]
discuss first-order current weighting, where the
charge is taken to be evenly distributed across a
square of unit size and the particle mover calcu-
lates currents by breaking a general translation
into two orthogonal moves of magnitude Ax and
Ay. Most recently, Marder [4] described a simula-
tion method which allows eq. (5) to be approxi-
mately satisfied, and the error, or “pseudo-cur-
rent” is kept small. Both our particle mover and
those discussed by Morse and Nielson are able to
rigorously satsify eq. (5); the crucial difference is
that we do not break up the charge motion into
orthogonal moves.

2. Calculating the fluxes and currents

Instead of updating the “longitudinal” and
“transverse” parts of the E-field separately, as is
often done in field solvers which employ spatial
Fourier transforms, we update E entirely from
Maxwell’s 9E /8t = V X B — J. In the process the
curl B term will, of course, only cause changes in
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the transverse part of E. However, when J has a
longitudinal part — which by virtue of V-J=
—dp /9t means when the charge density changes
— we get changes in the longitudinal part of E,
i.e. its flux, by just the change in p, as it should
be. In other words, there is no need to calculate
the longitudinal part of E separately except at
the very beginning (at time ¢ = 0). This supposecs
that the finite-difference form of current deposi-
tion is consistent with the continuity equation, i.c.
that the flux of J represents the change in the
charge distribution p rigorously.

The transverse part of E is affected also by the
magnetic field B. The record of B has to be
updated at every step by the transverse part of E,
in accordance with Maxwell’s dB/dr = —V X E.
In doing this, one accounts fully for both TE
modes as well as TM modes which are excited by
the motion of the charges.

We start the simulation by adopting the parti-
cle-in-cell method — creating a grid consisting of
squares of unit size, and placing on it unit square
charges. The charges may be located at arbitrary
places, and can be assigned either positive or
negative values. The total amount of charge is
assumed to be uniformly distributed over its sur-
face, and as fig. 1 shows, each charge will in
general contribute to the charge density in four
cells. The fractions contributed to each of the
four cells are proportional to the rectangular
areas of the charge square intercepted by the
cells. This is “area weighting” (see ref. [2]).

With each step of the simulation, each charge
is instructed to move a certain distance in a
certain direction. Since current density is in the
discrete case represented by motion of charge
into or out of a cell, it can be seen by the
divergence equation (5) that each boundary will
be swept over by an area of the square charge
that exactly corresponds to the current in a given
direction into or out of that cell. Although most
moves will affect the current on only four bound-
aries, motion of a single charge can in general
cause currents across four, seven, or ten bound-
aries and it is thus necessary to account for all of
these possibilities in the particle mover. In the
following figures showing how these cases are
treated, we have exagerrated the magnitude of

Fig. 1. Particle-in-cell. A charge with square cross-section
moves in a simulation space divided into cells also having
Square Cross-section.

the moves for purposes of illustration; in the
actual simulation the time step must satisty the
Courant condition, At<Ax/\/§ for a squarc
mesh in two dimensions. This limits the charge
displacements to less than Ax/ V2 per step.

The simplest and most common type of charge
motion involves four boundaries. The action of
the charge sweeping across the cell boundaries
gives rise to currents J., J-, /., J,,, as indi-
cated in fig. 2. o

Defining the “local origin™ for any charge to
be the intersection of cell boundaries nearest to
the charge center at the start of its motion and
the coordinates x and y to be the location of the
cell center relative to this origin, we can then
write the currents (assuming unit charge) as:

Ja=Ax(3-y—3Ay), (6)
Jo=Ax(5+y+34Ay), {(7)
Ja=Ay(3—x—3Ax), (8)
Joo=Ay(3+x+34x). (9)

These equations give the amount of charge cross-
ing a cell boundary. For instance, for the J
equation, the depth of charge moved is Ay. the
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Fig. 2. Four-boundary case. In the simplest, most common
type of move, motion of the charge will only create a current
across four cell boundaries. A move as shown will create the

four fluxes J,, J,,, J,; and J,; as given in egs. (6)(9). The

coordinates (x, y) describing the location of the charge center
at the start of the move are measured relative to the “local
origin.”

width is 5 —x at the start of the move and
decreases linearly to % —x — Ax at the end; the
average width, which is relevant for linear mo-
tion, is 3 —x — 3Ax. Note that the main compu-
tational effort is four multiplications, no more
than in the area weighting procedure which is
necessary when the longitudinal electric field is
calculated from charge densities. For the four-
boundary case (but not for the seven- and ten-
boundary cases discussed below) our currents,
given in eqs. (6)—(9), are the same as those calcu-
lated by Morse and Nielson. In general charges
may move in a way that they will affect the
current on more than four boundaries. A more

JIx2 J2

Xy //

=

‘JS'T “L-Bi -1541 2 IJ,Q

Jxi

X
* [ A
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—=AXpl 2
e
- AX

@n Local Origins for sections 1 and 2 of
move

—— Boundaries Experiencing
current flow
Fig. 3. Seven-boundary case. A charge can also move in a way
which affects the flux across seven boundaries. The total move
of Ax, Ay can be treated as a four-boundary move of Ax,
Ay, followed by another four-boundary move of Ax,, Ay,.
See eqgs. (10)-(15) in text.

complex case is the seven-boundary move, shown
below in fig. 3.

The seven boundary case can be treated as two
four-boundary moves - the first with the charge
center starting at x, y and moving a distance
AXx,, Ay, and the second with the charge moving
from x,, y, a distance Ax,, Ay,. There are
actually four “cases” of seven boundary moves,
depending on the direction of charge motion.
Equations for the case where the right edge of
the charge comes to rest with x >1 are given
below:

Ax;=05-x, (10)
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Ay, =(Ay/Ax) Ax,, (11)
x,=—05, (12)
yi=y+Ay, (13)
Ax,=Ax—-Ax,, (14)
Ay,=Ay—Ay,. (15)

The currents contributed by the first part of the
move, from x, y to x,, vy, are indicated in fig. 3
by J.. Ji2, J,; and J ;. The second portion of
the move starts at x,, y, and contributes the
currents J/,, J/,, J;, and J ,. Note that the
boundary connecting the local origins referenced
in the first and second portions of the move,
respectively, receives two current contributions.

In unusual cases, a charge can influence the
current on ten boundaries. Just as a seven bound-
ary move could be analyzed in terms of two
four-boundary moves, a ten-boundary move can
be decomposed into three distinct four-boundary
moves. There are eight possible cases of a ten-
boundary move, depending as in the seven
boundary case on the exact path which the charge
follows. For a charge moving as shown in fig. 4,
we have the following moves:

Move Starting position Ax, Ay

1 X,y Ax, Ay,

2 X, ¥y Axy Ay,

3 X2, Y2 Axz Ay,

where

Ax, =05 —x, (18)
Ay, =(Ay/Ax) Ax,, (19)
x, = —05, (20)
yi=y+Ay, (21)
Ay, =05-y—-Ay,, (22)
Ax,=(Ax/Ay) Ay,, (23)
X, =Ax,—0.5, (24)
y,=0.5, (25)
Ax;=Ax—Ax,~Ax,, (26)
Ays=Ay—~Ay, —Ay,. (27)
Again, the currents J, J,,,J,; and J,, are

shown, with the contributions from the second

— J%2
Jy1 Jg2
] ) 1
T Ve
: ) R
—de | =
? =
i. —Jx2
ng ng /:/
T Syt T ] i
1 2
_)Jx1 _)‘J),d

Ay

Fig. 4. Ten-boundary case. The most complex move will affect
current across ten boundaries. This move is treated as three
successive four-boundary moves, as described by eqs. (18)-
27).

move denoted by J' and the contributions from
the third move by J".

3. Field updating

In a two-and-one-half dimensional simulation
{one in which currents and fields in the z direc-
tion are calculated but variations d/0z arc as-
sumed to be zero) the curl equations (1) and (2),
can be expressed as:

0B, oF . oF

— = - . (28)
at oy ax

oF, 0B.

— =, (29)
at oy ’
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y z

a dx Jy ’ (30)
Using the staggered grid and compass directions
as given in fig. 5 and refs. [2,7] the above equa-
tions are implemented in the following finite-dif-
ference form, where the ratio 3¢/3x relates the
grid size and time scale, and must be chosen to
satisfy the Courant condition:

These finite-difference equations can also be in-
terpreted as statements of the integral form of
Maxwell’s equations. For instance, eq. (32) states
that the change of E-flux out of the east face of a
cube erected over the square in fig. 5 equals the
circulation of B around the face, minus the cur-
rent through the face. Once the updated E and
B fields have been calculated, the locations of the
particles must be incremented. The choice of
method for determining the force due to fields
located on cell boundaries on particles which are
at arbitrary locations is extremely important. If
the “self-force” (the electric force a particle ex-
erts on itself) is not zero, the grid will contain a
potential well at each cell center. Several meth-
ods of interpolating field values to charge loca-
tions have been tried, including twisted plane and
linear interpolations as well as area weighting. It
was found that area weighting (just like that used
to determine charge density in fig. 1) sucessfully

North

G pa.n is
TEU r oy B’

Bnew _ Bold
&t
_ _S_x((E;lorlh _ E;outh) _ (E;aS‘ — E;VeSl)),
(31)
ot
E;ew . E;)‘d — %;(Bnorlh _ Bsouth) . SIJX, (32)
Erew _ EOld - _ _81(363“ _ Bwest) — 5t (33)
y Y dx v
Gi-1,3)
B:
G=1,) 1 G=1,9
X2 X
West -

AN IR
OG.9), pl.)) 1 .JX

East

G-1,j-1) G- i
A-06,5-0
BZ 'Jg

g

Gi,j-1
B.
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Fig. 5. Standard cell at location (i, j) showing field locations and indexing conventions. Currents J and electric fields E lie in the

plane of the paper and are calculated at cell edges with positive direction indicated by the arrows; the magnetic field B is

perpendicular to the plane of the paper and is given at cell corners. Charge density p and electric potential ¢ are associated with
the cell center.
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eliminates self-force [2]. The weights must be
applied to field components which have been
averaged to the field centers.

4. Implementation

A simulation program implementing this rigor-
ous charge conservation was written for a grid
size of 128 X 128. An equal number of positive
and negative charge are placed at random loca-
tions throughout the grid, and the initial potential
is calculated using two-dimensional Hartley trans-
forms [6] to solve Poisson’s equation. When mov-
ing each particle, the program first uses its initial
and final positions to determine if the move will
effect only four boundaries. If, as is usually the
case it is a four-boundary move, egs. (6)-(9) are
applied and the program proceeds to the next
charge. If the move is more complicated, a sec-
ond routine checks for a seven-boundary case. If
necessary, a ten-boundary routine is called. Al-
though the number of operations involved in ad-
vancing a particle increases with the complexity
of the move, it should be noted that the majority
of moves will call the simple four-boundary case,
requiring only two shifts, four multiplies, and six
additions. The relative frequency of occurrence
of four-, seven-, and ten-boundary cases obviously
depends on the velocity distribution of the simu-
lation, but even in a system where many particles
approach the velocity of light ten-boundary moves
will remain unusual.

After all the particles have been moved and
their contributions to current density calculated,
the program updates the fields with finite-dif-
ference equations (31)-(33) and then finds the
force on each particle through the area-weighting
technique described earlier. It should be empha-
sized that the E field generated at each stage of
the simulation using this technique is identical to
that produced by area weighting; no sacrifice in
accuracy is made. Figure 6 shows the simulation
flow chart, and the actual particle mover is pre-
sented in fig. 7.

In our testing, the initial E-field was created
from a charge distribution and the initial B-field
was zero, and as expected, B remained zero after

Initialize fields,
particle positions
and velocities

Move particies, obtain
boundary current
contributions (see Fig. 7)

Update B and E using
equations (31)-(33)

Get Ax and Ay for each charge
by area weighting field values

Fig. 6. Simulation flow chart. General flow of a simulation
program showing initialization, following by repeated passes
through particle mover and field updating.

one step because of the initial curl-free E. After
eqs. (32) and (33) had been used to advance the
electric field to its new state, the divergence of
the new E-field was then calculated as (E{™ —
EXet4 prorth _ prrouthy /5 ¢ and  compared  with
the p deduced using the actual new positions of
the particles. It was found that the two methods
agreed to within roundoff, confirming that local
field updating can be accomplished at great time
savings and without any loss of accuracy.

5. Extension to three dimensions

In threce dimensions, “area weighting” be-
comes “‘volume weighting”. This can be inter-
preted as making each particle into a uniformily
charged cube of the same size as a cell, with the
center at the nominal particle position. In gen-
eral, the particle cube will occupy parts of eight
neighboring cells. The cell mesh will cut the cube
up into eight rectangular blocks. Figure 8 shows a
particle cube penetrating into the cell nearest the
viewer.
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The cells are indexed by the integral position
coordinates x =i, y=j, z=k of their centers.
Given a particle (i.e. the center of the particle
cube) at location x=i+¢, y=j+mn, z=k+2z,
where £, n, { lie between 0 and 1, table 1 shows
what fractions of the particle lie in each of the
eight cells.

These are the eight weights which must be
applied to data recorded at the cell centers (such
as charge density or electric potential) when de-
positing quantities into the arrays or when inter-
polating from array data. Volume weighting in
this manner amounts to trilinear interpolation:
linear in x times linear in y times linear in z.

Each particle cube straddles twelve cell faces,
four for each of the three orientations: x-facing,
y-facing and z-facing. The areas covered by the

Start

313
Table 1
Fraction of the particle in each of the eight cells
Weighting fraction Cell
1-80-u-9 i,J, k
EAQ-mU-9) i+1,j,k
1-970-0 Lj+1, k
A-80-7¢ i J,k+1
1-8n¢ Lj+1Lk+1
EG-m¢ i+1 4, k+1
En(1-0) i+1,j+1,k
Ent i+, 5+, k+1

particle on the four x-facing boundaries are (1 —
MmA-0,0-m) ¢ nQ =), n ¢ and similarly
for the y-facing and z-facing boundaries.
Consider a particle which moves straight from
(G+&,+tmuk+d) to (+éy, j+my, k+0)

Four-Boundary
Move?

Seven-Boundary
Move?

Four-Boundary
Routine - particle
starts at (x,y)

Yes

Yes

Four-Boundary
Routine - particle
starts at (x,y)

Four-Boundary
Routine - particle
starts at (x,y)

Four-Boundary
Routine - particle
starts at (x,,y)

Four-Boundary

Routine - particle

starts at (x4,

Four-Boundary
Routine - particle
starts at (x,,y,)

depending on the complexity of the move.

N

Fig. 7. Particle mover. Flow graph of particle mover involving either one, two, or three calls to the four-boundary routine
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linearly with time, covering a displacement Ax =
é:z - §lv Ay =N M1 Az = 52 - §| in the tlme
between = — § and ¢ = + 3. Its midway posi-
tion, reached at ¢ = 0, is given by
E=(&+E)/2 A=(m+m)/2,
{=(LH+40)/2 (34)

The total flux transported into the cell indexed
i+1, j+1, k+1 across its x-facing boundary
shared with the cell indexed ¢, j+ 1, kK + 1 is

[fn(r)g(r) d¢

:/]/2 (m+tAy)({+tAz) Ax dt
-2

=AxAL+Ax Ay Az/12. (35)
This is the contribution to J, at location i+ 3,
J+ 1, k + 1. The other three contributions are:
Ax(1—-m){~Ax Ay Az/12

at i+ 3, k+1,

Axq(1—{)—Ax Ay Az/12

at i+i 41k,
Ax(1-7)(1-{)+Ax Ay Az/12

at i+3%, 7, k. (36)
The four contributions to J, and J. are obtained
from eq. (36) by the cyclic rotation

i,Ax, E=j, Ay, p=k,Az, [ =i, Ax, E.
(37)

While the first term in each contribution is a
plausible generalisation to three dimensions from
what was obtained in egs. (6)-(9) for two dimen-
sions the Ax Ay Az/12 terms are new.

Addition of the three fluxes into the cell in-
dexed i+ 1, j+ 1, kK + 1 yields

AxTl+AylE+AzER +Ax Ay Az/4
= (§+ FAX) (7 + %Ay)(f+ 3Az)
—(F- tax)(7F - 1Ay) (- 1az). (38

Fig. 8. Three-dimensional version of the ** particle-in-cell”

i.c. the difference between the particle fractions
protruding into the cell beforc and after the
move. This, then, confirms rigorous charge con-
servation.

In 3D field solvers the dataon £, E . E., B,
B,, B. are staggered both in space and in time
[1]. E . is on record midway between cell centers
in the x-direction (as it would be if it werc
obtained by simple differencing of potentials
recorded at the cell centers), i.e. at locations 7 + i
j, k. This E_ is (but for the constant ¢,) also the
electric flux through the face centered at that
location. (See fig. 5 for the 2D version of this
method.) Here we make the approximation that
variations within a cell dimension can be treated
as linear, so that central values are avarages. This
flux, according to Maxwell, is incremented in a
unit time step by the circulation of B/u,, around
the cell face and decremented by the current
through the cell face, exactly the current which
we have calculated.

The circulation of B is obtained from B, and
B. values recorded in the middles of the edges of
the face. B data are kept on the complementary
mesh to that for E data, the mesh obtained by
interchanging the roles of centers and corners of
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our original mesh. The face centers of the com-
plementary mesh are the edge centers of the
original mesh and vice versa. Thus the data for
the circulation of E, required to update B fluxes,
are also just available where needed.

One important advantage of our method of
field solving is that no separate arrays are re-
quired for recording charge densities or current
densities. The currents created by the particles
can be added directly to the E field values in the
E update step. If, at certain stages of a run, a
charge density record is desired for diagnostic
purposes, it can be obtained by a single sweep
over the E data, adding the fluxes which enter
each cell through its six faces. The scheme was
tested in three dimensions in just this manner,
checking that the change in charge density due to
the movement of some particles was as it should
be. Agreement was exact to round-off.

The complementary mesh has another signifi-
cance: In order to determine which eight cells are

Input
Subroutine Subroutine
x-split y-split

create
pair

create
pair

v

1st

partitilj

2nd particle

1st
particlg

2nd particle

occupied by any particle one needs to know in
which cell of the complementary mesh the parti-
cle (i.e. the center of the particle cube) is located.
The displacements £, 1, { are measured from a
corner of the complementary mesh which is a
center of the original mesh. If, during a move, a
particle remains in the same complementary cell,
its £, n, and ¢ will remain between 0 and 1, and
the same eight cells of the original mesh will be
occupied by the particle. Currents will flow only
through the twelve faces that separate those eight
cells.

If, however, a particle leaves its complemen-
tary cell during its move, new cells of the original
mesh will be affected and currents will flow
through more than 12 faces. In two dimensions
we identified the corresponding situation as
“seven-boundary” and “ten-boundary” cases. In
three dimensions we have found it expedient not
to calculate exactly how many more cell faces will
receive currents. Instead, we have automated the

Subroutine
z-split

create
pair

1st

v
Subroutine to
deposit currents
on cell faces

Fig. 9. Flowchart showing how crossings of the complementary mesh boundaries are handled.
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particle splitting procedure illustrated in the flow
chart of fig. 7 by passing each particle through
four nested subroutines, as shown in fig. 9.

The creation of pairs is done in each case by
the procedure shown in eqgs. (10)-(15), with a
third co-ordinate to be included.

6. Conclusions

Using the techniques outlined in this paper, it
is possible to run an entire simulation without
resorting to Poisson’s equation while still rigor-
ously satisfying the divergence equation. Initial-
ization can be accomplished either by letting the
potential “evolve” using the method described in
the introduction or by using transforms, and all
steps thereafter rely on current information cal-
culated directly from charge motion. This rigor-
ous use of local-only information greatly simpli-
fies updating of fields and is ideally suited to
parallel processors. As a consequence of the
Courant condition, it will always be possible to
describe the motion of an arbitrary number of
particles over any amount of time as the superpo-
sition of the appropriate number of moves. In a
non-relativistic setting in two dimensions, only a
small percentage of moves will affect ten bound-

aries, and the majority of them will be simple
four-boundary cases. Local current densities due
to each move can be determined by application of
egs. (6)—(9) and the electric field then can be
found by direct application of Maxwell’s equa-
tions instead of through the Poisson solutions
used hitherto.
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