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in this paperwe presenta rigorous method for finding the electric field in two-and—one-halfand three dimensional
electromagneticplasma simulationswithout resortingto coniputationallyexpensivetransforms.A finite grid interpretation
of the divergenceequation~‘J = — ~ip/~)i is offered which allows the current density and thus ness local electric and
magneticfield strengthsto hedetermineddirectly from knowledgeof chargemotion.

1. Introduction ence form, already expresssuch local updating
explicitely, namely:

Field equationsare most commonly solved by
transform methods in simulations. The ready — = V xE, (1)
availability of efficient transform codesencour-
agesone to usesuch “spectral” methods.So does
our customto describe,interpret,andunderstand = V X B — J. (2)
field phenomenain termsof waves.

However, transformmethodsare “global”: all (using units suchthat � = 1, ,u = I. and c= 1). By
of the field information, nearandfar, contributes staggeringB-componentand E-componentdata
to eachsingle field harmonic.Computersof the suitably in both spaceand time (“leapfrogging”).
immediate future demandminimization of data theseequationsprovide new datafrom old, using
pathsand thereforecall for local methods.Even presentvaluesonly immediatelyto the east,west,
with hypercubetopology, ideally suited to FFT north,andsouth(seefig. 5), andaboveandbelow
implementation,the physicallength of singledata in threedimensions[1.71.
links will ultimitely becomethe bottleneck.Meth- By contrast,the two divergenceequations,
odswhich allow oneto updatefields purely from
local datashould therefore receive renewedat- V E = p. (3)
tention and it is gratifying to note that two of
Maxwell’s equations,whencast into finite differ- V B = 0, (4)
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require distant information (spatial boundary on gently and(2) that enoughstepsare takento
conditions) for their solution, particularly in the let the initial radiation escapeacrossthe compu-
caseof static conditions.Coupledwith V x E = 0 tational boundary.(Non-reflectingboundarycon-
andV X B = J, theythen leadto elliptic equations ditions, such as Lindman’s [51becomeimportant
for the components(or for the associatedpoten- here.)
tials). Transformmethods,or other global, direct In a two-dimensionalN x N grid this number
non-iterative poisson solvers would therefore of stepsis of the order N with a computational
seeminevitable, effort of order N2 per step.The transformeffort

Fortunately,the dynamicproblem of field evo- is of the order N2 log
2 N. However, since the

lution can be solved by meansof the evolution- local Maxwell algorithm is so much simpler than
ary, local equations(1) and (2) alone,after impos- eventhe most eleganttransform algorithm, the
ing the divergenceequations(3) and (4) only as transient, local method wins over the global
initial conditions. One readily checksthat V . B transformmethodevenon present-daycomputers
remainszero if it was so initially and that this is on which the length of datapaths is not yet an
rigorously true also for the simple space-and- issue.
time-centeredfinite difference versionsof a/at, In the first proposalfor solving the field prob-
curl and div that go with the dataarrangement lem locally (Buneman[1]) strict chargeconserva-
shown in fig. 5. One also checksthat V E re- tion was to be achievedwith a techniquecalled
mainsp by virtue of the conservationcondition “zero-ordercurrentweighting”. In thismethod,a

chargecrossinga cell boundaryfurnishesan im-
— (5\ pulseof currentproportionalto the value of the

— “ “ charge. While charge is conserved, the current
discontinuitiesintroducedgeneratelargeamounts

on the chargedensity. of noise.The natureof this noiseis discussedin
What we shall be concernedwith in this paper Birdsall and Langdon[2]. Morse and Nielson [3]

is to makesure that the finite-differenceimple- discussfirst-order current weighting, where the
mentationof the chargeconservationlaw (5) is chargeis takento be evenly distributedacrossa
also consistentwith the finite differenceversion squareof unit size and the particlemover calcu-
of a/at, div andcurl as applied to E and B. In lates currentsby breaking a generaltranslation
other words, if we generateE time step after into two orthogonalmovesof magnitudez~xand
time step from the finite-difference versions of ~y. Most recently,Marder[4] describeda simula-
(1) and (2) and calculate V . E, the resulting p tion method which allows eq. (5) to be approxi-
should satisfy (5) exactly in this finite-difference mately satisfied,and the error, or “pseudo-cur-
version. rent” is kept small. Both our particlemover and

Enforcing the initial conditionson the diver- thosediscussedby MorseandNielson areableto
gencesof E and B at time t = 0 now remainsas a rigorously satsify eq.(5); the crucial differenceis
once-only task. Given the initial p (and some that we do not breakup the chargemotion into
boundaryconditions),onecaneither use a trans- orthogonalmoves.
form or othernon-localmethodfor this first step,
or one can let p evolve from zero to its initial
state transiently in a certain number of prelimi- 2. Calculating the fluxes and currents
narysteps,startingwith source-freeE and B that
satisfy the boundaryconditions. Such E and B Instead of updating the “longitudinal” and
are in many casesknown analytically. “transverse”partsof the E-field separately,as is

Experimentsperformed on a personal corn- often done in field solverswhich employ spatial
puterby oneof us haveshownthat the static field Fourier transforms,we update E entirely from
is approachedsatisfactorily in transiencepro- Maxwell’s aE/at = V x B — J. In the processthe
vided(1) that thechargedistribution p is switched curl B term will, of course,only causechangesin
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the transversepartof E. However,when J has a
longitudinal part — which by virtue of V J =

—ap/at meanswhen the chargedensitychanges
— we get changesin the longitudinal part of E, ______________

i e its flux by Just the change in p as it should
be In otherwords thereis no needto calculate ______________ __________

the longitudinal part of E separatelyexceptat
the very begtnntng(at time t = 0) This supposes
that the ftnite differenceform of currentdepost
tion is consistentwith the continuityequation,i.e. __________________

that the flux of J representsthe change in the
chargedistribution p rigorously.

The transversepart of E is affectedalso by the
magnetic field B. The record of B has to be
updatedat every stepby thetransversepart of E,
in accordancewith Maxwell’s aB/at= — V x E.
In doing this, one accountsfully for both TE
modesas well asTM modeswhich are excited by

Fig. 1. Particle-in-cell. A charge with square cross-sectionthe motion of the charges. . ‘ ‘ .
moves in a simulation space divided into cells also havingWe start the simulationby adoptingthe part!- squarecross-section.

cle-in-cell method — creatinga grid consistingof
squaresof unit size, andplacingon it unit square
charges.The chargesmay be locatedat arbitrary the moves for purposes of illustration; in the
places, and can be assignedeither positive or actualsimulation the time step must satisfy the
negativevalues. The total amount of charge is Courant condition, ~t < ~x/~/i for a square
assumedto be uniformly distributedover its sur- mesh in two dimensions.This limits the charge
face, and as fig. 1 shows, each chargewill in displacementsto less than ~x/ ~ per step.
generalcontribute to the chargedensity in four The simplestandmostcommon type of charge
cells. The fractions contributed to each of the motion involves four boundaries.The action of
four cells are proportional to the rectangular the charge sweepingacross the cell boundaries
areasof the charge square intercepted by the gives rise to currents J~,~ in’ “v2’ as mdi-
cells. This is “area weighting” (see ref. [2]). catedin fig. 2.

With eachstepof the simulation,eachcharge Defining the “local origin” for any chargeto
is instructed to move a certain distance in a he the intersectionof cell boundariesnearestto
certain direction. Since current density is in the the chargecenter at the start of its motion and
discrete case representedby motion of charge the coordinatesx and y to be the location of the
into or out of a cell, it can be seen by the cell center relative to this origin, we can then
divergenceequation(5) that eachboundarywill write the currents(assumingunit charge)as:
be swept over by an areaof the squarecharge I

that exactlycorrespondsto the currentin a given j
51 = ~X(1 —y — (6)

direction into or out of that cell. Although most = ~x(~ +y + by), (7)
moveswill affectthe currenton only four bound-
aries, motion of a single chargecan in general ‘

1vt = —x— (8)
causecurrentsacrossfour, seven, or ten bound- j., = +x + ~©~x). (9)
ariesand it is thusnecessaryto accountfor all of “ - -

thesepossibilities in the particle mover. In the Theseequationsgive the amountof chargecross-
following figures showing how these cases are ing a cell boundary. For instance, for the ~‘nt

treated, we have exagerratedthe magnitude of equation,the depth of chargemoved is ~y. the
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Fig. 2. Four-boundary case. In the simplest, most common
typeof move, motion of the charge will only create a current Boundaries Experiencing
across four cell boundaries. A move as shown will create the current flow
four fluxes J~1,J~2,J~and J52 as given in eqs. (6)—(9). The Fig. 3. Seven-boundary case. A charge can also move in a way
coordinates (x, y) describing the location of the charge center which affects the flux across seven boundaries. The total move
at the start of the move are measured relative to the “local of Ax, Ay can be treated as a four-boundary move of Ax1,

origin.” Ay1 followed by another four-boundary move of Ax2, Ay2.
See eqs. (10)—(15) in text.

width is ~ — x at the start of the move and complexcaseis the seven-boundarymove, shown
decreaseslinearly to ~ —x — z~xat the end; the below in fig. 3.
averagewidth, which is relevant for linear rno- The sevenboundarycasecanbe treatedas two
tion, is ~ — x — ~x. Note that the main compu- four-boundarymoves — the first with the charge
tational effort is four multiplications, no more center starting at x, y and moving a distance
than in the areaweighting procedurewhich is ~, ~y1 andthe secondwith the chargemoving
necessarywhen the longitudinal electric field is from x~,Yi a distance .~x2,~y2. There are
calculatedfrom chargedensities.For the four- actually four “cases” of sevenboundarymoves,
boundarycase(but not for the seven- and ten- dependingon the direction of charge motion.
boundary cases discussedbelow) our currents, Equations for the casewhere the right edgeof
given in eqs.(6)—(9), are the sameas thosecalcu- the chargecomes to rest with x > 1 are given
lated by Morse and Nielson. In generalcharges below:
may move in a way that they will affect the
current on more than four boundaries.A more ~~x1= 0.5 X, (10)
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~Yi=(~Y/~X) ix,, (II)

xi = —0.5, (12)
4 J>~2

y~=y+~y,, (13)
__________ Jy2

~x2=~x~xi, (14) __________ . I ______ I
~y2 = — ay,. (15) —

—9Jx2

The currentscontributedby the first part of the — _________

move, from x, y to x1, Yi are indicatedin fig. 3 ,/7 —4J~2

by ~ “r2’ ~ and J~.2.The secondportion of j52 ,_.V

the move starts at x1, y1 and contributes the I ‘~iu~1~’ 1’.’~2
currents J~’~j2, J~ and J~2.Note that the — i I
boundaryconnectingthe local origins referenced
in the first and secondportions of the move, — ___________

‘—.9 __‘j’
respectively,receivestwo currentcontributions. ~xi xl

In unusualcases,a chargecan influence the
currenton ten boundaries.Justas a sevenbound -_____________ _____________ _____________

ary move could be analyzed in terms of two
four-boundarymoves, a ten-boundarymove can
be decomposedinto threedistinct four-boundary ~2 Y

moves. There are eight possiblecasesof a ten- ‘2

boundary move, depending as in the seven ~ ~i’~

boundarycaseon the exactpathwhich the charge I —~ ~ Ag

follows. For a chargemoving as shown in fig. 4,
we havethe following moves: Ax

Move Starting position Ax. Ay Fig. 4. Ten-boundarycase.The mostcomplexmove will affect

x. v Ax. A I current acrossten boundaries.This move is treatedas three
2 x1,y1 Ax,, Ay successivefour-boundarymoves,as describedby eqs.(18)—

x2, ‘~ Ax~,Av~ (27).

where
move denotedby J’ and the contributionsfrom

~xi =0.5 —x, (18) the third move byJ”.

~yi=(~y/~x) ~xi, (19)

x~= —0.5, (20) 3. Field updating

Yt=Y+~Yt, (21)

~ Yi = 0.5 — y — ~ yt, (22) In a two-and-one-halfdimensionalsimulation
(one in which currentsand fields in the z direc-

= (~x/~y)~y2, (23) tion are calculated but variations a/az are as-

= ~ — 0.5, (24) sumedto be zero)the curl equations(1) and(2),
can be expressedas:

(25) hB~ aE. hE.
(26) —=—--~-—-—~, (28)

cit dy hx
~y3=~y—~yi—~y2. (27) bE~ hB~

Again, the currents ./,~.,,~ J~,,and J~2are = — J~.’ (29)
shown, with the contributions from the second
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hE Thesefinite-differenceequationscan also be in-
= — -.~ — (30) terpretedas statementsof the integral form of

Maxwell’s equations.For instance,eq.(32) states
Using the staggeredgrid and compassdirections that the changeof E-flux Out of the eastface of a
as given in fig. 5 and refs. [2,7] the aboveequa- cubeerectedover the squarein fig. 5 equalsthe
tions are implementedin the following finite-dif- circulation of B aroundthe face, minus the cur-
ferenceform, where the ratio ôt/~xrelatesthe rent through the face. Once the updatedE and
grid size and time scale, and mustbe chosento B fields havebeencalculated,the locationsof the
satisfy the Courantcondition: particles must be incremented.The choice of

method for determiningthe force due to fields
B~’~— B~td locatedon cell boundarieson particleswhich are

at arbitrary locations is extremely important. If
= ~_((E~otth — E~0u1th)— (Eeast— E~~t)), the “self-force” (the electric force a particle ex-

x ‘31~ ertson itself) is not zero, the grid will contain a

‘- -‘ potential well at eachcell center.Severalmeth-

ods of interpolating field valuesto chargeloca-
E~W— E~= —(Bfb~~~— Bs0~~th)— ~J (32) tions havebeentried, includingtwistedplaneand

linear interpolationsas well asareaweighting. It

was found that areaweighting(just like that used
r’new u’oid i east west\ ~ J f33\

— = — ~ — ) — s’ ‘~ ) to determinechargedensity in fig. 1) sucessfully

North

5(1-Id) 6~

E (1—1 ,j) (i—I,)) (i,~) (i,j)

x. x ~(1,J),,p(l,J) ~.~ x
\s/ f ~‘ •

vvesL East

5(1~~~-i) E~1~’°J~’~°

South
Fig. 5. Standard cell at location (i, J) showing field locations and indexing conventions. Currents J and electric fields E lie in the
plane of the paper and are calculated at cell edges with positive direction indicated by the arrows; the magnetic field B is
perpendicular to the plane of the paper and is given at cell corners. Charge density p and electric Dotential 4 are associated with

the cell center.
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eliminates self-force [2]. The weights must be lnitielize fields,

applied to field componentswhich have been perticlepositions

averagedto the field centers, endvelocities

4. Implementation Move perticles,obt6in
bounderycurrent
contributions (see Fig. 7)

A simulationprogramimplementingthis rigor-
ous charge conservationwas written for a grid
size of 128 x 128. An equal number of positive I

I Updete B endE using
and negativechargeare placed at random loca- I equetions(3 l)-(33)
tions throughoutthegrid, andtheinitial potential ______________________
is calculatedusingtwo-dimensionalHartley trans-
forms [6] to solve Poisson’sequation.When mov -__________________________
ing eachparticle,the programfirst usesits initial Teet Ax end~y for eechcherge
and final positionsto determineif the move will by ereeweighting field velues
effect only four boundaries.If, as is usually the
caseit is a four-boundarymove, eqs.(6)—(9) are
applied and the program proceedsto the next . ,. . .

Fig. 6. Simulation flow chart. General flow of a simulation
charge. If the move is more complicated,a see- program showing initialization, following by repeatedpasses

ond routine checksfor a seven-boundarycase.If throughparticlemoverandfield updating.

necessary,a ten-boundaryroutine is called. Al-
thoughthe numberof operationsinvolved in ad-
vancing a particle increaseswith the complexity
of the move, it shouldbe notedthat the majority one stepbecauseof the initial curl-free E. After
of moves will call the simple four-boundarycase, eqs.(32) and (33) had beenused to advancethe
requiringonly two shifts, four multiplies, and six electric field to its new state,the divergenceof
additions. The relative frequencyof occurrence the new E-field was then calculatedas
of four-, seven-,andten-boundarycasesobviously E~ + E~0nh — E~0h1O1)/~x and compared with
dependson the velocity distribution of the simu- the p deducedusingthe actualnew positionsof
lation, but even in a systemwheremany particles the particles.It was found that the two methods
approachthevelocity of light ten-boundarymoves agreedto within roundoff, confirming that local
will remainunusual. field updatingcan be accomplishedat greattime

After all the particles have beenmoved and savingsandwithout any lossof accuracy.
their contributionsto current densitycalculated,
the program updatesthe fields with finite-dif-
ference equations (31 )—(33) and then finds the 5. Extension to three dimensions
force on eachparticlethroughthe area-weighting
techniquedescribedearlier. It shouldbe empha- In three dimensions, “area weighting” be-
sized that the E field generatedat eachstageof comes “volume weighting”. This can be inter-
the simulation usingthis techniqueis identical to pretedas making eachparticle into a uniformily
that producedby areaweighting; no sacrifice in chargedcubeof the samesize as a cell, with the
accuracyis made. Figure 6 shows the simulation center at the nominal particle position. In gen-
flow chart, and the actualparticle mover is pre- eral, the particle cubewill occupypartsof eight
sentedin fig. 7. neighboringcells. The cell mesh will cut the cube

In our testing, the initial E-field was created up into eight rectangularblocks. Figure 8 showsa
from a chargedistribution and the initial B-field particlecubepenetratinginto the cell nearestthe
waszero,and as expected,B remainedzeroafter viewer.
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The cells are indexedby the integralposition Table I

coordinatesx = i, y =j, z = k of their centers. Fractionof theparticle in each of the eight cells

Given a particle (i.e. the center of the particle Weightingfraction Cell
cube) at location x = i + ~, y =j + ~, z = k + z, (1 f)(1 — s~)(1— C) i, j, k

where ~, ij, ~ lie between0 and 1, table 1 shows ~ (i— ~)(l— C) i +i,j, k

what fractions of the particle lie in eachof the (1—f) ai (1— C) i, 1 + 1, k

eight cells. (t—f)(1—~)C ~, j, k +1
(1—f)aiC i,j+1,k+1

These are the eight weights which must be ~ (1— C + 1, j, k + 1

appliedto datarecordedat the cell centers(such ~~(1 C) i + 1, j + 1, k

as chargedensityor electricpotential) when de- ~~ ~‘ +1, j+1, k + 1

positing quantitiesinto the arraysor when inter-
polating from array data. Volume weighting in
this manneramounts to trilinear interpolation: particle on the four x-facingboundariesare (1 —

linear in x timeslinear in y timeslinear in z. ~ (1 — ~), (1 — ~ ~, i~(1 — h’), ~ ~, andsimilarly
Eachparticle cubestraddlestwelve cell faces, for the y-facingand z-facingboundaries.

four for eachof the threeorientations:x-facing, Considera particlewhich moves straight from
y-facing and z-facing. The areascoveredby the (i + ~, I + ~, k + ~) to (i + ~2’ ~ + 112~k + ~‘2)

St~rt

Four— Boundary
eZ~~Four—Boundary~> Routine — particle

Yes starts at (x,y)

No

Four—Boundary Four—Boundary
c~ Seven-Boundary T2~- Routine — particle Routine — particle

Yes starts at (x,y) starts at (x
1,y1)

No

Four—Boundary Four—Boundary Four— Boundary
Routine — perticle Routine — particle Routine — particle
sterts at (x,y) starts at (x1,y1) starts at (~,y2)

Fig. 7. Particle mover. Flow graph of particle mover involving either one, two, or three calls to the four.boundary routine
depending on the complexity of the move.
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linearly with time, coveringa displacement~Xx= ,,,,>x ~“ ______________

~2~I’ ~Y=~12~Th’ ~z=~2—~i in the time
between t = — ~- and t = + ~. Its midway posi-
tion, reachedat t = 0. is given by

~=(~2+~,)/2, ~=(~2+Th)/
2,

The total flux transportedinto the cell indexed ~
i + 1 j + I k + I across its x facing boundary z’~/ ,J~
sharedwith the cell indexed i, j + I, k + 1 is ~~‘///‘Y,’~~ ““~

f~(t)~(t)d~

= f~2(~+ t ~y)(~+ t ~z) ~x dt
— 1/2

= ~x~+ ~x ~y ~z/l2. (35)

This is the contribution to J~at location j + ‘ Fig.8. Three-dimensionalversionof the“particle-in-cell”

j + I, k + 1. The other threecontributionsare:

~x(1 — — ~x ~y ~z/l2 i.e. the differencebetweenthe particle fractions

at + I’ k + 1, protruding into the cell before and after the

- move. This, then, confirms rigorous chargecon-
— ~‘) — ~x ~y ~z/l2 servation.

at i + ~, I + 1, k, In 3D field solversthe dataon E
1, E~.E~,B~,

- — B., B are staggeredboth in spaceand in time
~x( 1 — ~)(1 — ~) + ~x ~ ~z/l2 [11.E1 is on record midwaybetweencell centers

at i + ~- I k. (36) in the x-direction (as it would be if it were
2’ obtained by simple differencing of potentials

The four contributionsto J~and J~areobtained recordedat the cell centers),i.e. at locationsi +

from eq.(36) by the cyclic rotation I, k. This E~is (but for the constante,,) also the

— — — electric flux through the face centeredat that
i, ~x, ~ ~y, ~ ~k, ~z, ~ ~x, ~ location. (See fig. 5 for the 2D version of this

(37) method.)Here we make the approximationthat
variationswithin a cell dimensioncan be treated

While the first term in each contribution is a as linear, so that centralvaluesare avarages.This
plausiblegeneralisationto threedimensions,from flux, according to Maxwell, is incrementedin a
what wasobtainedin eqs.(6)—(9) for two dimen- unit time stepby the circulation of B/~x11around
sionsthe ~x ~ ~z/12 terms arenew. . the cell face and decrementedby the current

Addition of the threefluxes into the cell in- through the cell face, exactly the current which
dexedi + 1, 1 + 1, k + I yields we havecalculated.

-- - The circulation of B is obtainedfrom B~,and
~x~+ ~ + ~ + ~x ~y ~z/4 B valuesrecordedin the middlesof the edgesof

= (~+rz~x)(~ + ~y)(~+ ~z) the face. B dataare kept on the complementary
- - - meshto that for E data, the mesh obtainedby

—(i— ~x)(~ — ~y)(~— ~z), (38) interchangingthe rolesof centersandcornersof
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our original mesh.The face centersof the corn- occupied by any particle one needsto know in
plementarymesh are the edge centers of the which cell of the complementarymeshthe parti-
original meshand vice versa.Thus the data for cle (i.e. the centerof the particle cube)is located.
thecirculationof E, requiredto updateB fluxes, The displacements~, sj, ~‘ are measuredfrom a
arealso just availablewhereneeded. corner of the complementarymesh which is a

One important advantageof our method of centerof the original mesh.If, during a move, a
field solving is that no separatearrays are re- particle remainsin the samecomplementarycell,
quired for recordingchargedensitiesor current its ~, s~,and ~‘ will remainbetween0 and 1, and
densities.The currentscreatedby the particles the sameeight cells of the original meshwill be
canbe addeddirectly to the E field values in the occupied by the particle. Currentswill flow only
E updatestep. If, at certain stagesof a run, a throughthe twelve facesthat separatethoseeight
charge density record is desired for diagnostic cells.
purposes,it can be obtainedby a single sweep If, however,a particle leavesits complemen-
over the E data, adding the fluxes which enter tarycell during its move, new cells of the original
eachcell through its six faces. The schemewas mesh will be affected and currents will flow
tested in three dimensionsin just this manner, through more than 12 faces. In two dimensions
checkingthat thechangein chargedensitydueto we identified the corresponding situation as
the movementof some particleswasas it should “seven-boundary”and “ten-boundary” cases.In
be.Agreementwas exact to round-off. threedimensionswe havefound it expedientnot

The complementarymeshhas anothersignifi- to calculateexactly how many morecell faceswill
cance:In order to determinewhich eight cells are receivecurrents.Instead,we haveautomatedthe

Input

Subroutine Subroutine Subroutinex—split . Y—~Pit z—Split

5:::? n0 ~:‘::~

2nd particle 2nd particle 2nd particle

Subroutine to
deposit currents
on cell faces

4
Output

Fig. 9. Flowchart showing how crossings of the complementary mesh boundaries are handled.
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particlesplitting procedureillustratedin the flow aries, and the majority of them will be simple
chart of fig. 7 by passingeach particle through four-boundarycases.Local current densitiesdue
four nestedsubroutines,as shownin fig. 9. to eachmovecanbe determinedby applicationof

The creationof pairs is done in eachcase by eqs. (6)—(9) and the electric field then can be
the procedureshown in eqs. (10)—(15), with a found by direct application of Maxwell’s equa-
third co-ordinateto be included. tions instead of through the Poisson solutions

usedhitherto.

6. Conclusions
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