An introduction to the cosmic microwave background

W. Hu
Cosmological Background

"Big Bang"
- Universe Began **Hot** and **Dense**
- Expands and **Cools**

"Gravitational Instability"
- Galaxies ("**Structure**") from the self-attraction of **primordial fluctuations**

W. Hu
Cosmological Expansion

Recession Velocity

Expansion Redshift
CMB Properties

- 3 degrees above absolute zero (-270°C)
- mm-cm wavelength (1-10% microwave oven)
- 400 photons/cm³ (10 trillion photons/sec/cm²)
- Few percent of TV "snow"
- Temperature slightly different on different parts of the sky (Wrinkled or anisotropic at 1 pt in 100000)
Large–Angle Anisotropies

Actual Temperature Data
Really Isotropic!

W. Hu
Large–Angle Anisotropies

dipole anisotropy
1 part in 1000

W. Hu
Large–Angle Anisotropies

10°–90° anisotropy
1 part in 100000

W. Hu
Very Brief History

Nucleo-Synthesis

Last Scattering

Galaxy Formation

CMB

3 min

3 x 10^5 yrs

5 x 10^9 yrs
Gravitational Instability

"Wrinkles"
or Hills & Valleys

Accumulation in Valleys

Initial

After Infall

W. Hu
Inflation to Structure Formation

- Present
- Inflation
- Exponential Stretch
- Rapid Expansion
- Gravitational Instability
- Large Scale Structure
- Galaxies

Time

<10^{-35}s

10^{10}\text{yrs}
Inflation to Structure Formation

- Inflation
- Exponential Stretch
- Horizon
- Rapid Expansion
- Horizon Crossing
- Gravitational Instability
- Large Scale Structure
- Galaxies

<10^{-35} \text{s} \quad 10^{10} \text{yrs}

W. Hu
Inflation to Structure Formation

- Inflation
- Last Scattering
- Horizon Crossing
- Present

<10^{-35}s \quad 3 \times 10^5\text{yrs} \quad 10^{10}\text{yrs}

Gravitational Instability

Large Scale Structure

Galaxies

CMB Observer

Exponential Stretch

Rapid Expansion

Horizon

W. Hu
Large–Angle Anisotropies

$10^\circ – 90^\circ$ anisotropy
seeing beyond the horizon

W. Hu
Understanding Maps

COBE's fuzzy vision

W. Hu
Understanding Maps

COBE's fuzzy vision

W. Hu
Understanding Maps

COBE's imperfect reception
Understanding Maps

Our best guess for the original map

W. Hu
Small–Angle Anisotropies

$<1^\circ$ anisotropy
seeing inside the horizon

W. Hu
Small–Angle Anisotropies

Horizon Crossing

W. Hu
Small–Angle Anisotropies

3x10⁵ yrs

10¹⁰ yrs

Last Scattering

Horizon

Present

W. Hu
Small–Angle Anisotropies

3x10^5 yrs

10^{10} yrs

CMB Observer

Horizon

Last Scattering

Present

W. Hu
Harmonic Features:

Origin of Fluctuations
(Inflation?)

Fate of the Universe
(Eternal expansion?
Big Crunch?)
Music of Inflation

- **Inflation**: 3×10^5 yrs to 10^{10} yrs
- **Horizon**: Present
- **CMB Observer**: Fundamental

W. Hu
Music of Inflation

Exponential Stretch

Inflation

Horizon

Rapid Expansion

Last Scattering

Present

3x10^5 yrs

Overtones 1:2:3...

10^{10} yrs

CMB Observer

W. Hu
Current CMB Quilt

\[\Delta T (\mu K) \]

\[\theta (\text{degrees}) \]

\[l (\text{multipole}) \]

W. Hu – Sept. 1998
Curvature and Fate of Universe

Negative Curvature: Expand Forever
Positive Curvature: Big Crunch
Microwave Background
Triumphs

Validation of

• **Big Bang**
 (Hot, Expanding Univ.)
 Thermal Spectrum
 Temp. at early times

• **Gravitational Instability**
 (wrinkles ➞ galaxies)
 Amplitude and Spectrum of Anisotropies

W. Hu
Microwave Background

Future

How Microwaves Ring

• **Origin and Evolution of Structure**
 (galaxies...)

 Music of Inflation?

• **Ultimate Fate and Global Properties**
 of the Universe

 Curvature, Content (dark matter)