Fluid Mechanics and HPC
Successes, Challenges, and Future Prospects

Paul Fischer
University of Illinois, CS & MechSE
Argonne National Laboratory, MCS

Christos Frouzakis
George Giannakopoulos
Katherine Heisey
Stefan Kerkemeier
James Lottes
Elia Merzari
Misun Min
Aleks Obabko
Philipp Schlatter
Martin Schmitt
Ananias Tomboulides

DNS of turbulence during the intake stroke of the TCC-3 engine model. G. Giannakopoulos
Outline

- Objectives
 - Computational landscape

- Successes
 - Predictive?

- Challenges

- Future Prospects

Thanks Bob!! 😊
This Talk: A View through a Single Lens

Nek5000

- Spectral Element Discretizations
- High-order Timesteppers
- Multilevel Solvers
- Scalable Implementations

NekCEM

- Vascular flow
- Magneto-Rotational Instability
- Reactor Thermal Hydraulics
- Combustion in IC engines etc. …
Incompressible Navier-Stokes Equations

\[
\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla p + \frac{1}{Re} \nabla^2 \mathbf{u}
\]

\[\nabla \cdot \mathbf{u} = 0\]

- **Key algorithmic / architectural issues:**
 - Unsteady evolution implies many timesteps, significant reuse of preconditioners, data partitioning, etc.
 - \(\text{div } \mathbf{u} = 0\) implies *long-range global coupling at each timestep*
 \[\rightarrow \text{iterative solvers}\]
 \[\rightarrow \text{communication intensive}\]
 - Small dissipation \(\rightarrow\) large number of scales \(\rightarrow\) large number of gridpoints for high Reynolds number \(Re\)

- Complex geometries and BCs keep everything interesting.
Industrial Example

- 12 hour turnaround for result on the left:
 - 6 hours to mesh, 6 hours to run on 16K cores
- 3 Days for result on the right (mostly meshing...)
DNS of Flow around a NACA4412 Wing Profile

Re_c = 400,000 with 5° angle of attack.
3.2 billion gridpoints

Enhanced cooling for ANL’s Advanced Photon Source

w/ J. Collins, ANL-APS

- Front-end and beam-line high thermal-load devices.
 - Wire-coil inserts increase heat transfer up to 4X over straight passages.
 - CFD lends insight into enhancement mechanisms.
Results, for similar geometry, full conjugate heat transfer:

- Excellent prediction of heat transfer coefficient.
- Analysis, however, is perplexing because of a large region of negative eddy diffusivity.
- We’ve recently realized that this is not uncommon in oscillatory systems.
- The insight has led to potential design improvements, currently being simulated.
Sublaminar Drag in Curved Pipe Flow
— Noorani & Schlatter ’12

DNS results are being used to calibrate new RANS models in commercial engineering codes.

10% drag reduction!

Tangential Velocity (symmetry plane) shows clear wave pattern

(last 48 hours)
Transition in Arterio-Venous Grafts

- Port for dialysis patients: sustain high flow rates → efficient dialysis

- PTFE plastic tubing surgically attached from artery to vein
 - short-circuit of high- to low-pressure vessels yields high velocities—weak turbulence

- Graft failure results in 50% of cases after 3-6 months due excessive stimulation and growth of smooth muscle cells (intimal hyperplasia) downstream of attachment to vein.
Where is the Turbulence Coming From?

- Flow reversal (upstream), into DVS
 - Three simulations with steady inlet conditions at $Re_G = 1200$
 - 100, 85, and 70% flow through PVS
 - 70% case shows strong turbulence, despite the fact that $Re_{PVS} = 950$
 - Results confirmed by LDA measurements in the same geometry.
Mean Flow for Re 1200, 70:30 Flow Split

Comparison of spectral element and measured velocity distributions in an arteriovenous graft, $Re_G = 1200$

Coherent structures in arteriovenous graft @ $Re_G = 1200$

(Computations by S.W. Lee, UIC. Experiments by D. Smith, UIC)
Influence of Reynolds Number and Flow Division on u_{rms}
Reactor Examples

- Thermal striping in a T-Junction
 - Important because thermal stresses lead to component failure
 - Subject of OECD/NEA-sponsored blind-benchmark

- ANL Max Experiment
 - Thermal striping mock-up of outlet plenum
 - co-flowing jets at different temperatures

- Rod bundle flows
 - Transition / mixing / RANS validation
Thermal striping leads to thermal fatigue in structural components

Centerplane, side, and top views of temperature distribution
Nek5000 Submission to T-Junction Benchmark

- E=62000 spectral elements of order N=7 (n=21 million)
- \(\text{Re}_D = 40,000 \) for inlet pipes
- Subgrid dissipation modeled with low-pass spectral filter
- \(L_x \sim 25 D \) (cost is quadratic in \(L_x \))
- 24 hours on 16384 processors of BG/P (850 MHz) \(\sim 33x \) slower than uRANS

Recycling turbulent inflows

Test Section, \(L_x \)
Results Presented by NEA/OECD Benchmark Organizers

- Experiment with hot/cold inlets at Re ~ 10^5
- Velocity and temperature inlet data provided by Vattenfall.
- 29 entries, resolution n=1 to 70 M gridpoints
- SEM ranked 1st in thermocouple prediction
Argonne is constructing a highly instrumented experiment (MAX) to provide detailed velocity and temperature data for code validation.

- 1 x 1 x 1.7 m3
- High speed thermal imaging camera
- PIV

Figure 1. Apparatus for gas mixing experiments: Nd:YLF laser (left), infrared camera (top), PIV camera (right), and hexagonal flow channels (below).
MAX Experiment: LES / RANS Comparisons

- **Steady RANS about 100,000 X faster than LES**

Merzari et al., On the numerical simulation of thermal striping in the upper plenum of a fast reactor, ICAPP (2010)
Why High-Fidelity?

Major Difference in Jet Behavior for Minor Design Change!

Simulation Results:
- Small perturbation yields $O(1)$ change in jet behavior
- Unstable jet, with low-frequency (20 – 30 s) oscillations
- Visualization shows change due to jet / cross-flow interaction
- MAX2 results **not** predicted by steady RANS (URANS ok)

Lomperski et al., *Jet stability and wall impingement flow field in a thermal striping experiment*, IJHMT 115 (2017)
Time Series Analysis of MAX Data

- MAX1 – **STABLE:** canisters extending into the domain
- MAX2 – **UNSTABLE:** canisters flush with plenum floor
 - Order-unity oscillations in jet position
 - Implications for thermal striping (thermal-mechanical fatigue)

Energy Spectrum

- ~20 seconds
- .06 Hz
- $k^{-5/3}$
MATIS Benchmark Problem

A. Obabko

- 220 million points
- 400,000 elements
- 5 million CPU hrs

- Ranked first in prediction of turbulence rms
A Sobering Fact: We Are Not Running Faster

Panda Thermal Stratification Benchmark
(Obabko, Tomboulides, Aithal, Merzari, F. 2014)

- Low density jet entering stratified background
- Very long time integrations
 - 1 month of wall clock time
 - 2 minutes of physics
 - Desire 2 hours \(\rightarrow\) **5 years wall-clock time on 8K cores.**
- Nek5000
 - \(n \sim EN^3 = 62\text{ million gridpoints}\)
 - \(P = 16384\text{ MPI ranks}\)
 - \(n / P \sim 3000\)
- For straight hydro, cannot further reduce \(n/P\)
A Computational Quandary

- We are not running faster

 - Clock speeds are fixed at ~ 1 – 4 GHz for past 10 years
 - Power concerns favor reduced clock speeds and more parallelism.
 - Communication costs limit granularity to be relatively coarse.

- What can we do?

<table>
<thead>
<tr>
<th>Time Savings</th>
<th>Power Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-Order</td>
<td>10 x</td>
</tr>
<tr>
<td>Scalable solvers</td>
<td>10 x</td>
</tr>
<tr>
<td>Lower communication costs</td>
<td>10 x</td>
</tr>
<tr>
<td>Parallel in time? (ensemble average?)</td>
<td>10 x</td>
</tr>
<tr>
<td>Lower $n_{1/2}$ on nodes</td>
<td>? x</td>
</tr>
</tbody>
</table>
Influence of Scaling on Discretization

Large problem sizes enabled by peta- and exascale computers allow propagation of small features (size λ) over distances $L >> l$. If speed ~ 1, then $t_{\text{final}} \sim L/\lambda$.

- Dispersion errors accumulate linearly with time:

$$\sim |\text{correct speed} - \text{numerical speed}| * t \quad \text{(for each wavenumber)}$$

$$\rightarrow \text{error}_{t_{\text{final}}} \sim (L/\lambda) * |\text{numerical dispersion error}|$$

- For fixed final error ε_f, require: numerical dispersion error $\sim (\lambda/L)\varepsilon_f, << 1$.

High-order methods can efficiently deliver small dispersion errors.

(Kreiss & Oliger 72, Gottlieb et al. 2007)
High-Order Spatial Discretizations

Example: Spectral element method (Patera 84, Maday & Patera 89)

- Variational method, similar to FEM, using GL quadrature.
- Domain partitioned into E high-order hexahedral elements
- Trial and test functions represented as Nth-order tensor-product polynomials within each element. ($N \sim 4 -- 15$, typ.)

- $n \sim EN^3$ gridpoints in 3D
- Fast operator evaluation: $O(n)$ storage, $O(nN)$ work
- Converges \textit{exponentially fast} with N for smooth solutions.

2D basis function, N=10
Spectral Element Convergence: Exponential with N

- 4 orders-of-magnitude error reduction when doubling the resolution in each direction

- For a given error,
 - Reduced number of gridpoints
 - Reduced memory footprint.
 - Reduced data movement.

Exact Navier-Stokes Solution (Kovazsnay ‘48)

$$v_x = 1 - e^{\lambda x} \cos 2\pi y$$

$$v_y = \frac{\lambda}{2\pi} e^{\lambda x} \sin 2\pi y$$

$$\lambda := \frac{Re}{2} - \sqrt{\frac{Re^2}{4} + 4\pi^2}$$
Excellent transport properties, even for non-smooth solutions

Convection of non-smooth data on a 32x32 grid. (cf. Gottlieb & Orszag 77)

(K₁ x K₁ spectral elements of order N)
Stabilization via Spectral Filter

Boyd ’98, F. & Mullen ‘01

- Expand in modal basis:
 \[u(x) = \sum_{k=0}^{N} \hat{u}_k \phi_k(r) \]

- Set filtered function to:
 \[\tilde{u}(x) = \tilde{F}(u) = \sum_{k=0}^{N} \sigma_k \hat{u}_k \phi_k(r) \]

- Spectral convergence and continuity preserved. (Coefficients decay exponentially fast.)

- In higher space dimensions:
 \[F = \tilde{F} \otimes \tilde{F} \otimes \tilde{F} \]
Figure 6: Eigenmodes for free-surface film flow: (left, top) contours of vertical velocity v for unfiltered and (left, bottom) filtered solution at time $t = 179.6$; (right) error in growth rate vs. t.

Filtering permits $Re_{d99} > 700$ for transitional boundary layer calculations.

Figure 1: Principal vortex structures identified by $\lambda_2 = -1$ isosurfaces at $Re = 700$: standing horseshoe vortex (a), interlaced tails (b), hairpin head (c), and bridge (d). Colors indicate pressure. ($K=1021$, $N=15$).
Hairpin Vortices in an Intake Port

- $Re_D = 45,000$
- Note the highly-resolved filamental horseshoe vortices around the base of the valve stem that ultimately break down into a hairpin vortex chain.
- Although turbulent, it’s definitely not *random*!
The Success of Filtering Led us to Understand a Major Source of Instability –

Aliasing in Advection: \(u_t + c \cdot \nabla u = 0 \)

- Velocity fields model first-order terms in expansion of straining and rotating flows.
- Rotational case is skew-symmetric.
- Aliasing is not a nonlinear phenomena. (*This problem is linear.*)
- Filtering attacks the leading-order unstable mode.

\[
\begin{align*}
&\text{c = (-x,y)} \\
&\text{c = (-y,x)}
\end{align*}
\]

Aliased / Dealiiased Eigenvalues

Malm et al., JSC 2013
Cost Driver: Scalable Multilevel Solvers:
Cost Driver: Scalable Multilevel Solvers:

\[\mathbf{z} = \mathbf{M}\mathbf{r} = \sum_{e=1}^{E} \mathbf{R}_e^T \mathbf{A}_e^{-1} \mathbf{R}_e \mathbf{r} + \mathbf{R}_0^T \mathbf{A}_0^{-1} \mathbf{R}_0 \mathbf{r} \]

(Dryja & Widlund 87, Pahl 93, Lottes & F 01)

Local Overlapping Smoother: FEM-based Poisson problems with homogeneous Dirichlet boundary conditions, \(\mathbf{A}_e \).

Use fast diagonalization.

Coarse Grid Solve: Poisson problem using linear finite elements on entire spectral element mesh, \(\mathbf{A}_0 \) (GLOBAL).
Putting At All Together: Subassembly with 217 Wire-Wrapped Pins

- 3 million 7th-order spectral elements (n=1.01 billion)
- 16384–131072 processors of IBM BG/P
- 15 iterations per timestep; 1 sec/step @ P=131072
- Coarse grid solve < 10% run time at P=131072
Scaling to Beyond 1 Million Processes

217 Pin Problem, N=9, E=3e6:

- 2 billion points
- BGQ – 524288 cores
 - 1 or 2 ranks per core
- A mixture of CG / multigrid
- 60% parallel efficiency at 1 million processes
- 2000 points/process
Some Exascale Questions

- Will this scaling continue as we move to exascale?
- Is this the best we can do?
- What, exactly, is better, or even good?
 - Good node performance
 - Strong scaling to large processor counts.

Strong scaling is ultimately limited by costs that do not go to zero as $n/P \to 0$:

$$t \sim c_1 \frac{n}{P} + c_2 + c_3 \log P$$

- $c_2 \sim$ communication overhead
 - \sim other overhead (memory latency on GPU)
 - \sim Amdahl
- $c_3 \sim$ can be mitigated by hardware on the NIC

Analyze through modeling computational complexity.
Complexity Models for Iterative Solvers

- Point Jacobi iteration (7-point stencil, 3D):
 - Work: \(T_{aJ} \sim 14 \frac{n}{P} t_a \)
 - Communication: \(T_{cJ} \sim (6 + (\frac{n}{P})^{2/3} (\frac{1}{m_2})) \alpha t_a \)

- Conjugate gradient iteration (7-point stencil): (alt: Chebyshev iteration)
 - Work: \(T_{aCG} \sim 27 \frac{n}{P} t_a \)
 - Communication: \(T_{cCG} \sim T_{cJ} + 4 \log_2 P \alpha t_a \)

- Geometric Multigrid:
 - Work: \(T_{aMG} \sim 50 \frac{n}{P} t_a \)
 - Communication: \(T_{cMG} \sim (8 \log_2 \frac{n}{P} + 30m_2 (\frac{n}{P})^{2/3} + 8 \log_2 P) \alpha t_a \)
Scaling Estimates: Jacobi

Q: How large must n/P be for $T_a \sim T_c$?

$$\frac{T_c}{T_a} = \frac{6 \left(1 + \frac{1}{m_2} (n/P)^{2/3}\right) \alpha}{14 n/P} \leq 1$$

$\alpha = 2300$

$\beta = 12.6$

$m_2 = 185$

$(n/P) \approx 2000$

- Similar analysis leads to
 - $n/P \approx 1200$ for CG
 - $n/P \approx 12,000$ for multigrid
 - Consistent with observed scaling behavior
We are interested in high performance for relatively small local problem sizes.

In HPC, we need to keep an eye on not only (application-specific) peak sustained node performance, S_1.

We also need to be concerned with how large the local problem size must be to reach the saturated performance limit.

At the strong-scale limit, time to solution scales like:

$$T_P \sim O\left(\frac{n_{1/2}}{S_1} \right)$$

Increasing S_1 reduces time to solution only if $n_{1/2}$ does not rise commensurately.

Obviously, this argument doesn’t address power/cost concerns.
Recent Production Runs at 1 Million Ranks

A. Obabko

- Conjugate heat transfer
 - Seven pitches
 - E=15 million elements
 - N=5
 - n=1.5 billion
 - time in coarse solve: 19 & 26%

- Runs on 16 and 32 racks BGQ
 - P=524288 and 1048576 ranks
 - n/P = 2861 and 1430
 - $\eta_P = .72$ and .56
 - Very close to earlier performance model
Summary & Observations

- We have come a long way in predictive turbulence simulations.

- Long-time integrations continue to put pressure on the need for strong scaling:
 - more processors for fixed problem size
 - \(n/P \to 0 \)

- New complex nodes are driving \(n/P \gg 1 \).
 - \(n_{1/2} \) limits
 - potential adverse impact on running fast

- Ensemble averaging and reduced-order models are possible mitigation strategies.
Thank you Bob for making this an energetic and successful enterprise!